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ABSTRACT

This thesis consists of three journal papers I have worked on during the past three years of

my PhD studies.

In the first paper, we presented a multi-objective integer programming model for the gene

stacking problem. Although the gene stacking problem is proved to be NP-hard, we have

been able to obtain Pareto frontiers for smaller sized instances within one minute using the

state-of-the-art commercial computer solvers in our computational experiments.

In the second paper, we presented an exact algorithm for the bilevel mixed integer linear

programming (BMILP) problem under three simplifying assumptions. Compared to these

existing ones, our new algorithm relies on weaker assumptions, explicitly considers infinite

optimal, infeasible, and unbounded cases, and is proved to terminate infinitely with the correct

output. We report results of our computational experiments on a small library of BMILP test

instances, which we have created and made publicly available online.

In the third paper, we presented the watermelon algorithm for the bilevel integer linear

programming (BILP) problem. To our best knowledge, it is the first exact algorithm which

promises to solve all possible BILPs, including finitely optimal, infeasible, and unbounded

cases. What is more, our algorithm does not rely on any simplifying condition, allowing even

the case of unboundedness for the high point problem. We prove that the watermelon algorithm

must finitely terminate with the correct output. Computational experiments are also reported

showing the efficiency of our algorithm.
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CHAPTER 1. GENERAL INTRODUCTION

1.1 Introduction

This thesis consists of three journal papers I have worked on during the past three years of

my PhD studies. The research presented in these papers centers on the following two topics:

(1) the application of a multi-objective optimization model in the gene stacking problem; (2)

algorithm design for solving the bilevel integer/mixed integer linear programming problem.

This chapter briefly introduces the background of the dissertation topics. Chapters 2 to 4 are

the three papers, respectively. Chapter 5 summarizes the contributions of my dissertation and

discusses some future research directions.

1.1.1 Multi-Objective Optimization

Multi-Objective optimization naturally arises in the practical cases when we consider several

objectives simultaneously while making a decision. Generally, when all of the constraints and

objectives involved can be expressed in terms of linear inequalities and linear functions, a multi-

objective optimization model is formulated as a multi-objective linear programming (MOLP)

problem as follows:

max
x

ζ = [c>1 x, c
>
2 x, · · · , c>mx]> (1.1)

s. t. Ax ≤ b, (1.2)

x ≥ 0. (1.3)

In a multi-objective optimization problem, optimality of all objectives is usually not achiev-

able at the same time. An important concept for making wise tradeoffs among competing
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objectives is Pareto optimality. A solution is Pareto optimal when it is not dominated by any

feasible solution. Mathematically, Pareto optimality for MOLP (1.1)-(1.3) can be defined as

follows:

Definition 1. Let X = {x|x ≥ 0, Ax ≤ b}. A solution x is Pareto optimal in (1.1)-(1.3) if

and only if: (1) x ∈ X; (2) there is no solution y ∈ X such that c>i y ≥ c>i x, ∀1 ≤ i ≤ m and

∃i ∈ {1, 2, · · · ,m}, c>i y > c>i x.

According to the definition above, there could exist multiple Pareto optimal solutions, and

the collection of these solutions, called Pareto frontier, yields a range of good tradeoff options

for specific decision makers to choose from. Any of these solutions can be claimed optimal,

depending on specific situations or perspectives.

In practical applications, we encounter more situations when variables take integral value

only rather than continuous. In that case, multi-objective discrete optimization is formulated

by a multi-objective integer programming (MOIP) with (1.3) replaced by x ≥ 0, x ∈ Zn.

The concepts such as Pareto optimality and Pareto frontier can be naturally inherited from

those in the continuous case. As for a multi-objective discrete optimization, in most cases,

the size of Pareto frontier can be exponentially large or infinite and consequently it is almost

computationally intractable to compute the whole Pareto frontier. Note that even for the

simplest MOLP with two objectives, it is NP-hard to identity if a feasible solution belong to

the Pareto frontier (Papadimitriou and Yannakakis, 2000).

Multi-objective optimization models are widely used to capture the trade-offs between two

or more conflicting objectives under a certain set of constraints. Its applications can be found

in structural design (Tseng and Lu, 1990), chemical engineering (Rajesh et al., 2001), computer

and software engineering (Blickle et al., 1998), finance (Bouri et al., 2002), etc.

1.1.2 Gene Stacking Problem

One hundred and fifty years ago Charles Darwin described how adaptation by a few founders

to a new environment could result in emergence of a new species. In his revolutionary book,

The Origin of Species (Darwin, 1872), he described how this idea followed logically from the
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experience of animal breeding. Fifty years ago, Alan Robertson described the impact of intense

selection on the progeny from a small founder population: An unadaptive population of sub-

optimal phenotypes. To ameliorate such undesirable consequences, new sources of desirable

genetic variability need to be introduced without disrupting genetic networks assembled by

generations of selection. Currently this is attempted through ad hoc procedures with occasional

success. In this paper, we present an optimization model for stacking desirable sources of genetic

variability into adapted breeding populations.

Plant breeders have shown that introgression of single genes into existing inbred lines

through marker assisted backcrossing is trivial (Anderson et al., 2008; Cahill and Schmidt,

2004; Concibido et al., 1994; Eathington et al., 2007; Pumphrey et al., 2007; Tanksley and

Hewitt, 1988) and the ability to pyramid desirable alleles for an oligogenic trait into a sin-

gle background is straight-forward (Bonnet et al., 2005; Eathington et al., 2007; Howes et al.,

1998; Wang et al., 2007b). However, for complex traits, it is not obvious if there is a single best

marker assisted breeding method. Simulation modeling is a tool that can be employed to ad-

dress this question (Podlich et al., 2004), and results indicate that optimal breeding strategies

are dependent upon the genetic architecture of the trait, reproductive biology of the crop and

the size and structure of the breeding population. As challenging as marker assisted breeding

is for a single complex trait, the challenge is greater for multiple breeding objectives involving

several complex traits. A heuristic algorithm is presented in Servin et al. (2004) to combine

a series of target genes identified in different parents into a single genotype, on the basis of

both the population sizes they require and on their total duration. Other constraints could also

be taken into account, but it would further complicate the issue and require more advanced

methodologies. For example, consider the objective of maintaining genetic diversity throughout

the genome while applying selection on alleles at a large number of loci scattered throughout

the genome.

In the last decades operations research (Hillier and Lieberman, 2005) has been addressing

these types of challenges in industrial engineering, manufacturing systems, financial systems

and business management using deterministic (Murty, 1995), stochastic (Birge and Louveaux,

1997; Kall and Wallace, 1994), and dynamic programming (Bellman, 1957; Puterman, 1994)
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methods. Given the emergence of information on plant genomes, we hypothesize that operations

research tools can now be used for large scale genetic improvement of crops.

In Chapter 2, we attempt to address the problem of gene stacking using a multi-objective

integer programming approach. From a population genetic perspective, the goal represents

selection and fixation of desirable alleles at a set of loci responsible for the desirable trait, while

maintaining genetic variability at all remaining loci in an adapted breeding population. From

the perspective of operations research, the challenge is to determine the Pareto frontier of an

NP-hard optimization problem with two competing objectives. Merging these two perspectives

produces the following goal: Determine the Pareto frontier of marker assisted breeding strate-

gies with respect to the likelihood of success and the number of generations while maintaining

the genetic diversity of the adapted population.

1.1.3 Bilevel Optimization

In traditional linear programming programs, there is only one single decision-making party

who tries to figure out an optimal decision subject to a certain set of constraints such that their

objectives reach the best. As opposed to that, in a bilevel program, there are typically two

competing decision-making parties: one is upper level decision makers and the other is lower

level decision makers. The two levels interact with each other in the following ways: (1) the set

of lower level constraints is completely determined by the upper level’s decision; (2) upper level

objectives are mutually determined by decisions from both levels; (3) for each decision made

by the upper level, lower level will choose the best option according to their objectives and

the updated set of constraints. From the first and third point, we can see that decision from

the upper level inexplictly determine lower level’s best reaction. Thus we can view a bilevel

program as a one-level traditional optimization program in which: (1) upper level is the only

decision-making party and (2) upper level try to control the lower level’s decision in the way

that lower level will react by choosing the best option under the corresponding constraints.

The problem captured in a bilevel program is how does the upper level make a decision such

that their objectives can reach the best.

Bilevel optimization models have vast applications in the real world. Brotcorne et al. (2001);
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Cote et al. (2003); Labbe et al. (1998) presented applications of bilevel optimization models into

transportation area where upper level represents decision makers setting price or tolls while

lower level represents users traveling on shortest path within budget. Salmeron et al. (2004)

showed an application into national security where upper level represents defenders allocating

resources to minimize risk while lower level represents offenders trying maximizing destruction

for a given budget. Fampa et al. (2008) offered an application into energy where upper level is

the energy provider minimizing total cost while lower level is the energy consumer determining

the pattern of consumption. Bard et al. (2000) presented an application into taxation policy

where upper level is the policy maker maximizing social welfare and lower level is the producer

maximizing profit. There are applications into other areas as well such as network interdiction

(Morton et al., 2007; Lim and Smith, 2007), national agriculture planning (Fortuny-Amat and

McCarl, 1981), decentralized management of multidivisional firms (Bard, 1983), etc.

Mathematically, a general bilevel optimization model can be formulated as a bilevel mixed

integer linear programming (BMILP) as follows:

max
x,y

ζ1 = c>x+ d>1 y (1.4)

s. t. A1x+B1y ≤ b1, (1.5)

y ∈ argmaxỹ{ζ2 = d>2 ỹ : A2x+B2ỹ ≤ b2, ỹ ≥ 0, ỹJ ∈ Z|J |}, (1.6)

x ≥ 0, xI ∈ Z|I|. (1.7)

BMILP problems (1.4)-(1.7) are hard. The computational challenges mainly lie in the

following points: (1) the bilevel feasible region can be noncovex; (2) the optimal value can be

unattainable; (3) the unboundedness is hard to detect; (4) the optimal value obtained after

relaxing variables in y to be continuous in (1.6) fails to serve as an upper bound. To demonstrate

these challenges, let us consider the example offered in Köppe et al. (2009).

Example 1.

max
x,y

ζ1 = −x+ y

s. t. 0 ≤ x ≤ 1,

y ∈ argmaxỹ{ζ2 = −ỹ : 0 ≤ ỹ ≤ 1; ỹ ≥ x; ỹ ∈ Z}.
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Easily we can check the following facts: (1) the bilevel feasible region is {(x, y)|(0 < x ≤

1, y = 1)∨(x = 0, y = 0)} which is nonconvex; (2) the supreme of objective value is 1 which can

not be attained; (3) the optimal value obtained after relaxing variables in y to be continuous

is 0 which is not an upper bound.

Perhaps due to these challenges, there has been insufficient attention and progress on theo-

retical and algorithmic development. We were able to find only a handful of BMILP algorithms.

In their seminal work (Moore and Bard, 1990), Moore and Bard presented perhaps the first

branch-and-bound algorithms for BMILP under the assumption that B1 = 0. The nature of

the algorithms is heuristic, which does not guarantee their correctness or finite termination.

However, they proved that the algorithms find the optimal solution if either all upper level

variables x are integral or all lower level variables y are continuous. The case of unbounded

BMILP is not discussed. DeNegre and Ralphs (2009) invented another algorithm under the

assumptions that variables in both levels are all integral, and B1 = 0. No proof of correctness

and finite termination is provided, nor is the unbounded case discussed. Relevant literature

also includes Köppe et al. (2009) and Dempe (2001). Köppe et al. (2009) is among the first to

discover that, if the upper level contains continuous variables and the lower level discrete ones,

then the supremum of the BMILP may not be attainable even if it finitely exists. However, the

paper only proved the existence of an algorithm that solves BMILP in polynomial time when

n2 is fixed, referring to parametric integer programming approaches (Eisenbrand and Shmonin,

2008). The algorithm proposed by Dempe (2001), although referred to as a discrete bilevel

programming algorithm, solves a different model, which is more similar to what is referred to

as the inverse mixed integer linear programming problem in Wang (2009).

In Chapter 3, we present an exact algorithm for the bilevel mixed integer linear programming

(BMILP) problem under three simplifying assumptions: (1) variables in the upper level are all

integral; (2) the feasible region for the upper level variables is bounded; (3) A2 in (1.6) is

integral. The algorithm that we present here differs from existing ones in the following four

aspects. First, we allow the B1 matrix in (1.5) to be nonzero. This significantly raises the

difficulty of the problem, since obtaining a bilevel feasible solution is no longer straightforward.
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Nevertheless, allowing for nonzero B1 could be practically imperative, because in many real

world situations the consequences of the lower level’s decisions must be taken into account by

the upper level as explicit constraints. Second, we allow the lower level to have both continuous

and discrete variables. Third, we explicitly consider all possible outcomes of a BMILP, be it

infeasible, unbounded, or finitely optimal. Fourth, we prove that our algorithm will finitely

terminate with the correct output.

In Chapter 4, we present the so-called watermelon algorithm for the bilevel integer linear

programming (BILP) problem. In this case, we assume variables in both levels are all integral.

The watermelon algorithm we present in this paper differs from previous algorithms by having

the following four features: (1) solves all BILP instances without any additional simplifying

assumptions, (2) terminates in a finite number of iterations, (3) correctly identifies unbounded

or infeasible instances, and (4) obtains a global optimal solution if one exists. Note that any

BILP instance has only three possible outcomes: infeasible, unbounded, or optimal (having a

global optimal solution).
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CHAPTER 2. AN OPTIMIZATION APPROACH TO GENE STACKING

Pan Xu, Lizhi Wang, and William Beavis, “An optimization approach to gene stacking”,

European Journal of Operational Research, vol. 214(1), p. 168-178, 2011.

2.1 Abstract

We present a multi-objective integer programming model for the gene stacking problem,

which is to bring desirable alleles found in multiple initial inbred lines to a single genotype.

Pareto optimal solutions from the model provide strategic breeding schemes to maximize the

likelihood of successfully creating the target genotypes and to minimize the number of gen-

erations needed to do so. The biological diversity consideration is also incorporated in the

models to preserve desirable alleles of all variations in the target population. Although the

gene stacking problem is proved to be NP-hard, we have been able to obtain Pareto frontiers

for smaller sized instances within one minute using the state-of-the-art commercial computer

solvers in our computational experiments.

2.2 Introduction

One hundred and fifty years ago Charles Darwin described how adaptation by a few founders

to a new environment could result in emergence of a new species. In his revolutionary book,

The Origin of Species (Darwin, 1872), he described how this idea followed logically from the

experience of animal breeding. Fifty years ago, Alan Robertson described the impact of intense

selection on the progeny from a small founder population: an unadaptive population of sub-

optimal phenotypes. To ameliorate such undesirable consequences, new sources of desirable

genetic variability need to be introduced without disrupting genetic networks assembled by
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generations of selection. Currently this is attempted through ad hoc procedures with occasional

success. In this paper, we present an optimization model for stacking desirable sources of genetic

variability into adapted breeding populations.

Plant breeders have shown that introgression of single genes into existing inbred lines

through marker assisted backcrossing is trivial (Anderson et al., 2008; Cahill and Schmidt,

2004; Concibido et al., 1994; Eathington et al., 2007; Pumphrey et al., 2007; Tanksley and

Hewitt, 1988) and the ability to pyramid desirable alleles for an oligogenic trait into a sin-

gle background is straight-forward (Bonnet et al., 2005; Eathington et al., 2007; Howes et al.,

1998; Wang et al., 2007b). However, for complex traits, it is not obvious if there is a single best

marker assisted breeding method. Simulation modeling is a tool that can be employed to ad-

dress this question (Podlich et al., 2004), and results indicate that optimal breeding strategies

are dependent upon the genetic architecture of the trait, reproductive biology of the crop and

the size and structure of the breeding population. As challenging as marker assisted breeding

is for a single complex trait, the challenge is greater for multiple breeding objectives involving

several complex traits. A heuristic algorithm is presented in Servin et al. (2004) to combine

a series of target genes identified in different parents into a single genotype, on the basis of

both the population sizes they require and on their total duration. Other constraints could also

be taken into account, but it would further complicate the issue and require more advanced

methodologies. For example, consider the objective of maintaining genetic diversity throughout

the genome while applying selection on alleles at a large number of loci scattered throughout

the genome.

In the last decades, operations research (Hillier and Lieberman, 2005) has been addressing

these types of challenges in industrial engineering, manufacturing systems, financial systems

and business management using deterministic (Murty, 1995), stochastic (Birge and Louveaux,

1997; Kall and Wallace, 1994), and dynamic programming (Bellman, 1957; Puterman, 1994)

methods. Given the emergence of information on plant genomes, we hypothesize that oper-

ations research tools can now be used for large scale genetic improvement of crops. In this

paper, we attempt to address the problem of gene stacking using a multi-objective integer pro-
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gramming approach. From a population genetic perspective, the goal represents selection and

fixation of desirable alleles at a set of loci responsible for the desirable trait, while maintaining

genetic variability at all remaining loci in an adapted breeding population. From the per-

spective of operations research, the challenge is to determine the Pareto frontier of an NP-hard

optimization problem with two competing objectives. Merging these two perspectives produces

the following goal: Determine the Pareto frontier of marker assisted strategies with respect to

likelihood of success and the number of generations while maintaining the genetic diversity of

the adapted population.

The remainder of this paper is organized as follows. Section 4.2 presents a multi-objective

integer program formulation for the gene stacking problem, Section 4.3 presents both exact and

heuristic algorithms for solving the model, Section 4.4 demonstrates the approach using two

numerical examples, and Section 2.6 concludes the paper.

2.3 Problem Formulation

2.3.1 Mathematical Description of Breeding Rules

Consider the genetic architecture consisting of a single allele at each of M independently

segregating loci. For the specific purpose of gene stacking, we simplify the biological character-

istics of all alleles by classifying them as either desirable (denoted by 1) or undesirable (denoted

by 0). Given a breeding population consisting of N inbreds, our goal is to bring all desirable

alleles into a single inbred by strategically selecting inbreds from the breeding population for

crossing. If we represent the breeding population with an M by N binary matrix indicating

the desirability of the genotypes at each locus, then the goal becomes to develop an inbred

line consisting of 1’s at all loci (rows) in a single individual (column). When two inbreds are

crossed, the progeny inherits a genome either from one parent as a whole or as a recombination

of both parents’. To develop the ideal inbred (or target genotype), recombinations are usually
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inevitable. For example


1

0

1

×


1

1

0

⇒


1

1

1

 is a possible recombination outcome, which

inherits two desirable alleles at the top two loci from one parent and one desirable allele at the

bottom locus from the other parent. In this example, different fonts are used to differentiate

alleles of the two parents, but desirable alleles at the same locus are assumed to be biological

homogeneous.

2.3.2 Stacking Strategy and Efficiency Measure

There may exist a wide range of stacking strategies that could bring all desirable alleles to

a single individual, and we attempt to find the most efficient one. We measure the efficiency

of a strategy by two criteria: the likelihood of successfully obtaining the target genotype and

the number of generations it takes to achieve it. For example, consider the initial population

with five inbreds



1 0 1 0 0

0 1 1 0 0

1 0 0 1 0

0 1 0 1 0

1 0 0 0 1

0 1 0 0 1


, named (1), (2), (3), (4), and (5) from left to right. To

create the ideal inbred with six 1’s in a column, one strategy is to cross (1) with (2), which

requires five recombination points and one generation. Alternatively, we could also cross (3)

and (4) first, and then cross their progeny that inherits all the 1’s with (5), which will require

two recombination points and two generations. The first strategy dominates the second one in

terms of the number of generations but has a lower likelihood of success (due to a larger number

of necessary rare recombinants), thus a tradeoff between probability and time is inevitable in

this case. We will use a multi-objective approach to address the tradeoff between these two

competing objectives.
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2.3.3 Multi-Objective Optimization Model

In this section, we introduce a multi-objective optimization model to obtain the most effi-

cient stacking strategy for a given breeding population. Let a binary matrix A ∈ BM×N denote

an initial breeding population of N inbreds, each consisting of M alleles of interest that are

represented by M rows. The probability of recombination between Ai,j and Ai+1,j is assumed

to be ri, which is constant across all inbreds. We introduce three binary decision variables

x ∈ BM×N , y ∈ B(M−1)×N , and z ∈ BN×1. The variable xi,j indicates whether (xi,j = 1) or

not (xi,j = 0) the corresponding allele Ai,j is used in the ideal inbred; yi,j indicates whether

(yi,j = 1) or not (yi,j = 0) there is a recombination point between xi,j and xi+1,j ; and zj

indicates whether (zj = 1) or not (zj = 0) the initial inbred j should contribute one or more

desirable alleles to the ideal inbred.

We formulate the gene stacking problem as the following multi-objective optimization

model:

max
x,y,z

ρ =
∑
i,j

yi,j log

(
ri

1− ri

)
(2.1)

min
x,y,z

τ =

log2

∑
j

zj

 (2.2)

s. t. xi,j ≤ Ai,j ,∀i, j (2.3)∑
j

xi,j = 1,∀i (2.4)

yi,j ≥ xi,j − xi+1,j ,∀i, j (2.5)

M · zj ≥
∑
i

xi,j ,∀j (2.6)

xi,j , yi,j , zj ∈ {0, 1}, ∀i, j. (2.7)

The first objective (2.1) is to maximize the likelihood of successfully obtaining the ideal

inbred under the stacking strategy outlined in (x, y, z). Under the assumption that all recom-

bination points occur independently, we can measure the likelihood of success by multiplying

the probabilities ri of all recombination points identified in y and those 1−ri of all other points
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in the genotype:
M−1∏
i=1

[
r
∑

j yi,j
i · (1− ri)1−

∑
j yi,j

]
. (2.8)

We use this likelihood as one objective function to maximize. Notice that the objective func-

tion (2.1) is not maximizing this likelihood directly but its logarithm
∑

i,j log
(

ri
1−ri

)
yi,j +∑

i log (1− ri) less the constant term
∑

i log (1− ri) that does not affect the determination of

the optimal stacking strategy. Since the logarithm function is strictly increasing, maximizing

objective (2.1) is precisely equivalent to maximizing the original likelihood (2.8), but the former

linear function is much more computationally convenient.

The second objective (2.2) is to minimize the number of generations it takes to obtain the

ideal inbred under the stacking strategy outlined in (x, y, z). The term
∑

j zj calculates the

number of inbreds from the initial breeding population that are needed to create the ideal

inbred. Since all inbreds can be crossed in pairs in each generation, taking the logarithm of∑
j zj to the base 2 gives the number of necessary generations. To round up the number of

generations to an integer in case of fractions, we use the ceiling function in objective (2.2),

which gives the smallest integer that is larger than or equal to the number inside the ceiling

operator.

Constraint (2.3) means that only desirable alleles can be used in the ideal inbred; Constraint

(2.4) means that each allele of the ideal inbred comes from only one locus of one inbred;

Constraint (2.5) flags a recombination point whenever xi,j = 1 and xi+1,j = 0; Constraint (2.6)

indicates whether or not initial inbred j is used to create the ideal one; and Constraint (2.7)

requires that all decision variables be binary.

2.3.4 Extension to Genetic Diversity

The formulation in Section 2.3.3 is based on the assumption that all alleles of interest can

be classified as either desirable or undesirable. However, there are situations in which the exact

biological effects of different alleles at a locus are not understood, thus it would be appropriate

and necessary to maintain all variations in the target population rather than to arbitrarily keep
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one and eliminate all others. To accommodate this requirement, we modify the model in Sec-

tion 2.3.1 as follows. We classify an allele using non-negative integer numbers {0, 1, 2, ...}. A 0

means that the allele is known to be undesirable, and positive integers indicate the alleles that

are either desirable or unknown but need to be preserved. Alleles of the same variations are

also assumed to be biologically homogeneous thus do not need to be maintained in redundancy.

The goal of gene stacking is consequently changed from creating one ideal inbred to creating a

target population of inbreds such that all variations of all alleles are maintained but no unde-

sirable ones are admitted. For example, if the initial breeding population is



1 0 2 1

0 1 1 0

0 2 0 1

0 3 1 2


,

then a target population could be



1 2 2

1 1 1

1 2 1

2 3 1


. With the diversity extension, the problem adds

another level of complexity: we need to design a target population first, and then a strategy

for creating every single inbred in the target population.

Here we extend the multi-objective optimization model (2.1)-(2.7) to address the biological

diversity requirement. Let a non-negative integer matrix A ∈ ZM×N+ denote an initial breeding

population of inbreds, each consisting of M alleles of interest that are represented by M rows.

The probability of recombination between Ai,j and Ai+1,j is assumed to be ri. We also assume

that the number of inbreds in the target population is known to be at most K, a given param-

eter. We introduce four binary decision variables x ∈ BM×N×K , y ∈ B(M−1)×N×K , z ∈ BN×K ,

and w ∈ BK×1. The variables xi,j,k, yi,j,k, and zj,k are similar to the respective xi,j , yi,j , and zj

defined for model (2.1)-(2.7); the additional subscript k indicates that they contribute to the

kth inbred in the target population. Variable wk indicates whether (wk = 1) or not (wk = 0)

target inbred k is necessary. If the model determines one or more wk should be 0, then the

actual number of inbreds in the target population may be less than K. The multi-objective
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optimization model becomes the following:

max
x,y,z,w

ρ =
∑
i,k

wk log (1− ri) +
∑
i,j,k

yi,j,k log

(
ri

1− ri

)
(2.9)

min
x,y,z,w

τ = max
k

log2

∑
j

zj,k

 (2.10)

s. t. xi,j,k ≤ Ai,j , ∀i, j, k (2.11)∑
j

xi,j,k = wk,∀i, k (2.12)

yi,j,k ≥ xi,j,k − xi+1,j,k,∀i, j, k (2.13)

M · zj,k ≥
∑
i

xi,j,k, ∀j, k (2.14)∑
j,k:Ai,j,k=v

xi,j,k ≥ 1,∀i, v (2.15)

xi,j,k, yi,j,k, zj,k, wk ∈ {0, 1}, ∀i, j, k. (2.16)

The first objective (2.9) is similar to (2.1), except that the likelihood is estimated by mul-

tiplying the recombination probabilities of all target inbreds in the population:

M−1∏
i=1

[
r
∑

j,k yi,j,k
i · (1− ri)

∑
k wk−

∑
j,k yi,j,k

]
. (2.17)

The objective (2.9) is precisely its logarithm function. Since each target inbred takes a number

of generations to obtain, the second objective (2.10) minimizes the largest one. Constraints

(2.11), (2.13), (2.14), and (2.16) are the multiple-inbred version of (2.3), (2.5), (2.6), and (2.7),

respectively. Constraint (2.12) is similar to (2.4) except that it takes into account the fact

that not all K target inbreds are necessary; if wk = 0, then xi,j,k = 0, ∀i, j. Constraint (2.15)

requires that all variations of desirable alleles at all loci be preserved in the target population.

It is straightforward to check that when there is only one variation at each locus, the model

(2.9)-(2.16) for the biological diversity case reduces to (2.1)-(2.7) for the single variation case

in Section 2.3.3.

2.3.5 Complexity of the Problem

The multi-objective optimization model (2.9)-(2.16) is a hard problem. In the following, we

show that even if we ignore the second objective (2.10), the resulting single objective problem
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is NP-hard.

Proposition 1. The gene stacking problem defined by (2.9) and (2.11)-(2.16) is NP-hard.

Proof. We reduce the NP-hard set covering problem to the gene stacking problem. The set

covering problem is equivalent to the integer program mint
{∑

i ti : Ht ≥ 1, t ∈ Bn×1
}

, where

H ∈ Bm×n is a binary matrix. For a given H, we construct an initial breeding population

matrix A =

 2−H 2m×1

01×n 1

 ∈ {0, 1, 2}(m+1)×(n+1). Let K = n + 1 and the recombination

probability rm = 0.4. For 1 ≤ i ≤ m − 1, we set ri to be extremely small positive values

such that recombination at any of these loci is always prohibitive. The resulting gene stacking

problem is then equivalent to the set covering problem in the sense that a solution t is op-

timal to the set covering problem if and only if the following solution is optimal to the gene

stacking problem: xi,j,k =

 tk, if (i ≤ m, j = k) or (i = m+ 1, j = n+ 1);

0 otherwise.
,∀k = 1, ..., n,

and xi,j,n+1 =

 1, if j = n+ 1;

0, otherwise.

Moreover, we can show that if the first objective (2.9) is ignored and the ceiling and loga-

rithm functions in (2.10) are removed, then the resulting single objective problem is NP-hard.

Proposition 2. The gene stacking problem defined by min
{∑

j zj,k : (2.11)− (2.16)
}

is NP-

hard.

Proof. We also reduce the set covering problem to the gene stacking problem. For a given H,

we construct an initial breeding population matrix A = H and we set K = 1. The resulting

gene stacking problem is then equivalent to the set covering problem in the sense that a solution

t is optimal to the set covering problem if and only if z = t is optimal to the gene stacking

problem.
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2.4 Algorithm

In this section, we first present an exact algorithm for obtaining the Pareto frontier solutions

to the multi-objective optimization models (2.9)-(2.16), and then introduce improvement and

heuristics to speedup two steps in the algorithm at the price of possibly compromised solution

quality.

2.4.1 Exact Algorithm

In a multi-objective optimization problem, optimality of all objectives are usually not

achievable at the same time. An important concept for making wise tradeoffs among com-

peting objectives is Pareto optimality. A solution is Pareto optimal if and only if it is not

dominated by any feasible solution. A solution x is dominated by x̂ if x̂ is no worse than x

in any objectives and strictly better than x in at least one objective. Under this definition,

there could exist multiple Pareto optimal solutions, and the collection of these solutions, called

Pareto frontier, yields a range of good tradeoff options for specific decision makers to choose

from. Any of these solutions can be claimed optimal, depending on specific situations or per-

spectives.

In the following, we present an exact algorithm for obtaining the Pareto frontier of problem

(2.9)-(2.16).

Step 0: Initialize P = ∅ as the set of Pareto optimal solutions.

Step 1: Solve max{(2.9): (2.11)-(2.16)}. Let (x∗, y∗, z∗) be an optimal solution and ρ1 be the

optimal objective value.

Step 2: Solve the following integer program

Objective (2.10) (2.18)

s. t.
∑
i,k

wk log (1− ri) +
∑
i,j,k

yi,j,k log

(
ri

1− ri

)
≥ ρ1 (2.19)

Constraints (2.11)-(2.16). (2.20)
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Let (x1, y1, z1) be an optimal solution and τ1 be the optimal objective value. Update

P = P ∪ (x1, y1, z1).

Step 3: Solve the integer program min{(2.10): (2.11)-(2.16)}. Let (x∗, y∗, z∗) be an optimal

solution and τ2 be the optimal objective value .

Step 4: Solve the following integer program

Objective (2.9) (2.21)

s. t.
∑
j

zj,k ≤ 2τ2 ,∀k (2.22)

Constraints (2.11)-(2.16). (2.23)

Let (x2, y2, z2) be an optimal solution. Update P = P ∪ (x2, y2, z2).

Step 5: If τ1 − 1 ≤ τ2, then stop. Otherwise set τ2 = τ2 − 1 and solve the following integer

program

Objective (2.9) (2.24)

s. t.
∑
j

zj,k ≤ 2τ2 ,∀k (2.25)

Constraints (2.11)-(2.16). (2.26)

Let (x̄, ȳ, z̄) be an optimal solution, update P = P∪(x̄, ȳ, z̄), and repeat Step 5. �

In this algorithm, Steps 1 and 2 obtain a Pareto optimal solution (x1, y1, z1) that achieves

the maximal likelihood of success with fewest generations; Steps 3 and 4 obtain a Pareto optimal

solution (x2, y2, z2) that achieves the fewest generations with maximal likelihood of success; and

Step 5 is used repeatedly to compute other Pareto optimal solutions in between. When there

is only one variation at each locus, this algorithm automatically reduces to one for the single

variation case.

2.4.2 Improvement to Step 1

The objective of Step 1 is to obtain ρ1, the maximally possible likelihood of success to

achieve the target population. An obstacle to the efficient implementation of this step is the
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choice of K, the upper bound of the number of inbreds in the target population. If the value

of K is selected too small, then it could eliminate the true optimal solution; if it is selected too

large, then it would make the dimension of the integer program max{(2.9): (2.11)-(2.16)} too

high to be solved efficiently. Here we present a different integer program that not only solves

for ρ1 with much fewer variables but also computes the optimal value for K endogenously:

max
x,y,w

ρ =
∑
i

w log (1− ri) +
∑
i,j

yi,j log

(
ri

1− ri

)
(2.27)

s. t.
∑

j:Ai,j=0

xi,j = 0,∀i (2.28)

∑
j

xi,j = w,∀i (2.29)

yi,j ≥ xi,j − xi+1,j , ∀i, j (2.30)∑
j,k:Ai,j=v

xi,j ≥ 1,∀i, v (2.31)

xi,j , yi,j , w ∈ Z,∀i, j. (2.32)

The variables x, y, and w in (2.12)-(2.16) are respectively compressed to x, y, and w

in (2.27)-(2.32) by summation in the k dimension. The optimal w in (2.27)-(2.32) yields

the optimal value for K. Constraints (2.28), (2.29), (2.30) and (2.31) correspond to (2.11),

(2.12), (2.13) and (2.15) respectively. The model (2.27)-(2.32) provides an improved formulation

to compute ρ1 for Step 1 of the algorithm, but it does not specify how each inbred in the

target population is created, so it cannot be used in other steps when Objective (2.10) may be

concerned.

2.4.3 Heuristics to Step 3

The objective of Step 3 is to obtain τ2, the fewest possible generations to achieve the target

population. We propose to solve the following set covering problem to estimate τ2:

min{ζ =
∑
i

zi : sign(A)z ≥ 1, z ∈ Bn×1}. (2.33)

This integer program has much less variables than the one in Step 3, thus is much easier and

faster to solve. Let ζ∗ denote the optimal objective value of (2.33), then we can conclude

that τ2 satisfies dlog2 ζ
∗e ≤ τ2 ≤ dlog2(ζ∗ + 1)e. The lower bound is because no inbred in any
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target population could possibly be created using less than ζ∗ inbreds from the initial breeding

population. The upper bound is due to the fact that there exists a naive stacking strategy that

can create a biologically diverse target population of inbreds each using at most ζ∗ + 1 initial

breeding inbreds. This naive breeding strategy is to use the ζ∗ inbreds to create a new genotype

with no undesirable alleles, and then cross it with another initial inbred to introduce a new

variation of desirable allele. By the same means, all variations of all alleles can be introduced

to the target population, one through each target inbred, which can be done in parallel, thus

a target population can be created within dlog2(ζ∗ + 1)e generations. In many cases, we could

have dlog2 ζ
∗e = dlog2(ζ∗ + 1)e, then this approach will yield the exact optimal objective value

τ2.

2.5 Computational Experiments

To demonstrate the effectiveness of the algorithms proposed in Section 4.3, we conduct a

group of numerical experiments using MATLAB and CPLEX on a PC with 3.25 GB ram and

a 3.00 GHz CPU. Two examples from these experiments are explained in detail in this section.

Example 1 is the single variation case as introduced in Section 2.3.2, and Example 2 is the

biological diversity case as introduced in Section 2.3.3

Example 1. Consider an initial population of inbreds described by the following matrices A

and r:
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A =



0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 0 1 1 0 0 0 1 0

0 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0

0 1 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1

0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 1 0 1 0 0 0 1 0 1 0 0

0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1

1 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0

1 0 0 0 0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 0 1 0 0 0 1 1 0

1 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 1

1 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0

0 1 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 0

0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0

1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 0 0 1 0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 0 0

0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0 0 1 1 0

1 0 1 0 1 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 1 0 1 0 0 0 1 1

1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0

0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 1 1 0 0 1 1 0 1 0

0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0

0 0 0 0 1 1 0 1 0 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0

0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 1 1 0 1

0 1 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0

1 0 0 1 0 0 0 0 1 1 1 0 0 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0

0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0

0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 0 0

1 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 1

1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 0 0 1

1 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 1



,
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r =



0.0191

0.0065

0.0203

0.0261

0.0041

0.0915

0.0345

0.0629

0.0963

0.0015

0.0413

0.0890

0.0874

0.0810

0.0462

0.0234

0.0648

0.0186

0.0213

0.0138

0.0997

0.0817

0.0655

0.0589

0.0593

0.0431

0.0528

0.0330

0.0241



.

It took around one second to obtain the Pareto frontier, which consists of three points, as

illustrated in Figure 5. The none-zero columns of optimal x matrices for the three Pareto
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optimal solutions are given as follows.

x∗2 =



1 0 0 0

1 0 0 0

1 0 0 0

0 0 1 0

1 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0

0 0 0 1

0 1 0 0

0 0 1 0

0 0 1 0

0 0 1 0

0 0 1 0

0 1 0 0

0 0 0 1

0 0 0 1

0 0 1 0

0 0 1 0

0 0 1 0

0 0 1 0

0 0 0 1

0 1 0 0

0 1 0 0

1 0 0 0

0 1 0 0

0 1 0 0

0 0 0 1

0 0 0 1

0 0 0 1



, x∗3 =



1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1



, x∗4 =



0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0



.

Here x∗2, x∗3, and x∗4 correspond to the three points in Figure 5 with numbers of generations

being 2, 3, and 4, respectively. If we use their column numbers to refer to the 30 inbreds in the

initial population, then the four non-zero columns in x∗2 are inbreds (2), (20), (26), (30); the

eight non-zero columns in x∗3 are inbreds (2), (13), (17), (20), (21), (26), (29), and (30); and

the nine non-zero columns in x∗4 are inbreds (1), (2), (13), (17), (19), (21), (24), (26), and (29).

These Pareto optimal solutions provide three tradeoff options between likelihood of success ρ
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and generation time τ . The fastest approach to creating the ideal inbred takes two generations,

but the likelihood of success is as low as ρ2 = −43.8. The approach with the highest likelihood

of success ρ4 = −28.3 takes four generations. Perhaps a good compromise is x∗3, which has

a likelihood of success ρ3 = −28.8 and takes three generations. All three solutions could be

considered optimal in certain situations.

Figure 2.1 Pareto frontier of Example 1.

Example 2. Consider an initial population of inbreds described by the following matrices A

and r:

A =



1 3 0 2 0 0 3 0 1 0 0 0

1 1 0 0 1 0 0 3 0 2 0 0

1 0 0 1 1 2 0 0 0 0 0 3

1 3 0 2 0 0 3 0 1 0 0 0

0 2 1 1 1 1 1 1 1 3 1 2

1 3 0 2 0 0 1 1 0 0 0 0

1 0 0 0 0 0 0 1 3 0 2 3

1 0 2 0 1 0 3 0 0 0 2 0

1 0 0 0 2 3 1 0 0 2 0 0

0 1 1 1 3 1 1 1 2 1 1 1

1 0 0 0 0 3 2 0 1 1 0 0

1 0 0 0 2 3 1 0 2 0 0 0



, r =



0.0770

0.0350

0.0662

0.0416

0.0842

0.0833

0.0256

0.0613

0.0582

0.0541

0.0870



.

The Pareto frontier consists of three solutions, each corresponding to a target population, which

contains a varying number of target inbreds. They are illustrated in Figure 6. We use xik to
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denote the kth target inbred of the ith Pareto optimal solution. It took 49.1 seconds to compute

the first Pareto optimal solution, which contains 10 inbreds in the target population:

x11(1, 2) =



1 0

1 0

1 0

0 1

0 1

0 1

1 0

1 0

1 0

0 1

1 0

1 0



, x21(1, 4) =



0 1

1 0

1 0

0 1

0 1

0 1

1 0

1 0

1 0

0 1

1 0

1 0



, x31(1, 5) =



1 0

1 0

1 0

1 0

0 1

1 0

1 0

1 0

0 1

0 1

1 0

1 0



, x41(1, 6) =



1 0

1 0

0 1

1 0

0 1

1 0

1 0

1 0

0 1

0 1

0 1

0 1



, x51(1, 7) =



0 1

1 0

1 0

0 1

0 1

1 0

1 0

0 1

0 1

0 1

0 1

0 1



,

x61(1, 8) =



1 0

0 1

1 0

1 0

0 1

1 0

1 0

1 0

1 0

0 1

1 0

1 0



, x71(1, 9) =



1 0

1 0

1 0

0 1

0 1

1 0

1 0

1 0

1 0

0 1

0 1

0 1



, x81(1, 10) =



1 0

0 1

1 0

1 0

0 1

1 0

1 0

1 0

0 1

0 1

0 1

1 0



, x91(1, 11) =



1 0

1 0

1 0

1 0

0 1

1 0

0 1

0 1

1 0

0 1

1 0

1 0



, x101 (1, 12) =



1 0

1 0

0 1

1 0

0 1

1 0

0 1

1 0

1 0

0 1

1 0

1 0



.

The numbers in parentheses indicate the indices of the non-zero columns in the solutions, which

correspond to inbreds in the initial population, numbered from 1 to 12 from left to right. Since

each target inbred can be created by crossing two from the initial population, the entire tar-

get population could be created within one generation. The likelihood of success is as low as

ρ1 = −151.2.

It took 21.3 seconds to compute the second Pareto optimal solution, which contains three
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Figure 2.2 Pareto frontier of Example 2.

inbreds in the target population:

x12(4, 7, 8, 12) =



1 0 0 0

0 0 1 0

0 0 0 1

1 0 0 0

1 0 0 0

1 0 0 0

0 0 0 1

0 1 0 0

0 1 0 0

0 1 0 0

0 1 0 0

0 1 0 0



, x22(1, 6, 9, 10) =



1 0 0 0

0 0 0 1

1 0 0 0

1 0 0 0

0 0 0 1

1 0 0 0

1 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 1 0



, x32(2, 5, 6, 11) =



1 0 0 0

1 0 0 0

0 0 1 0

1 0 0 0

1 0 0 0

1 0 0 0

0 0 0 1

0 0 0 1

0 1 0 0

0 1 0 0

0 0 1 0

0 0 1 0



.

This solution requires two generations, and the likelihood of success is ρ2 = −48.3.

It took 0.4 second to compute the third Pareto optimal solution, which contains three
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inbreds in the target population:

x13(2, 7, 8, 12) =



1 0 0 0

1 0 1 0

0 0 0 1

1 0 0 0

1 0 0 0

1 0 0 0

0 0 0 1

0 1 0 0

0 1 0 0

0 1 0 0

0 1 0 0

0 1 0 0



, x23(1, 6, 9, 10) =



1 0 0 0

0 0 0 1

1 0 0 0

1 0 0 0

0 0 0 1

1 0 0 0

1 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 1 0



, x33(4, 5, 6, 10, 11) =



1 0 0 0 0

0 0 0 1 0

0 0 1 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

0 0 0 0 1

0 0 0 0 1

0 1 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 1 0 0



.

This solution requires three generations, and the likelihood of success is ρ3 = −45.0.

2.6 Conclusions and Discussions

In this paper, we present an optimization approach to stacking desirable genes scattered

in multiple inbred lines into one genotype. The issue of biological diversity is also taken into

account by preserving desirable alleles of all genetic variations. We formulate this problem as a

multi-objective integer programming program, which yields Pareto optimal breeding strategies

with respect to two criteria: the likelihood of successfully obtaining the target population of

inbreds and the number of generations required to achieve it. Numerical examples demon-

strate the feasibility of using the proposed approach to obtain breeding strategies for stacking

a smaller amount of genes of a few variations into one target population of inbreds within one

minute.

Several limitations of the proposed approach must be noted. First, our approach is based

on the assumption that the mapping from genes of interest to target loci is known. The de-

velopments in quantitative trait loci (Bernardo and Yu, 2007; Jung et al., 2005; Kebede et al.,

2001; Mackay, 2004; Wu et al., 2002) and marker-assisted selection (Bernardo and Charcosset,

2006; Dekkers, 2007; Lande and Thompson, 1990; Lange and Whittaker, 2001; Whittaker, 2001)



www.manaraa.com

28

provide theoretical basis for such mapping information, yet complete knowledge is not always

available or easily accessible. Second, the likelihood of success computed in (2.8) or (2.17) is

only an approximate indicator of the probability of success, but does not reflect the exact value.

To see the difference, consider the following simple example. Suppose the initial population

has two inbreds: A =



1 0

1 1

0 1

0 1


, and the recombination probabilities are r =


0.01

0.02

0.05

. It

is not hard to see that the optimal breeding solution is x∗ =



1 0

1 0

0 1

0 1


with a likelihood of

success ρ∗ = log[(1 − 0.01) × 0.02 × (1 − 0.05)] = −4.0, since the necessary recombination

is easier to occur between the second and third loci than between the first and second ones.

However, when the two inbreds are mated, the probability of creating the ideal inbred is not

(1− 0.01)× 0.02× (1− 0.05) but (1− 0.01)× 0.02× (1− 0.05) + 0.01× (1− 0.02)× (1− 0.05),

since the less likely recombination between the first two loci also contributes to the probability

of success. We ignore such contributions in the likelihood calculation in order to avoid sum-

mations inside the product of probabilities; otherwise it would void the linearization trick for

the objective function, which the tractability of the model is so dependent upon. This mod-

eling inaccuracy has two consequences: (i) the probability of success of the optimal breeding

strategy is underestimated to some extent, and (ii) there may exist certain breeding strategies

whose computed likelihoods of success are much lower then the actual probabilities thus are

mistakenly determined non-optimal by the algorithm. The third limitation is that our model as-

sumes no interference between adjacent loci pairs, which may not always be the case in practice.

Despite the limitations, our approach makes a distinct contribution to the animal and plant

breeding practices and theoretical studies on the genetic architecture of complex traits. To

our best knowledge, this is the first study that formulates the gene stacking problem as a
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multi-objective optimization model. This approach takes advantage of the state-of-the-art al-

gorithms and computer solvers that can efficiently search the entire exponentially exploding

(Servin et al., 2004) solution space and provide solutions that can be mathematically proved

to be optimal. The flexibility to address biological diversity in the model also extends the

model’s applicability to a wider range of situations, in which all alleles cannot be simply dif-

ferentiated as desirable or undesirable but also exhibit distinctions in their desirability. Using

results from complexity theory, we prove that the gene stacking problem is NP-hard, which

can be non-rigorously interpreted as extremely unlikely to be polynomially solvable. Recently

emerging results (Deolalikar, 2010) in complexity theory have presented unconfirmed proofs for

the non-existence of polynomial algorithms for NP-hard problems.

It is important to recognize that, although solutions from the optimization models provide

insightful information, they are merely tools to enable animal and plant breeders to make better

informed decisions when faced with overwhelming amounts of “omics” data for multiple breed-

ing objectives involving complex traits. Consider the same example two paragraphs above.

Even though the optimal breeding strategy is given in x∗, it does not address all concerns such

as the following two: (i) optimal planting arrangement for founding inbreds to assure success-

ful matings and (ii) what to do if the ideal inbred does not result after the first generation by

whatever chance and for whatever reason. To address concern (i), it would require a separate

study on the tradeoff between the breeding cost and the probability of success, and it is ulti-

mately individual breeder’s call. As for concern (ii), suppose the best child produced after the

first generation is



1

1

1

0


rather than the ideal column of ones, then one could certainly apply

our approach to the updated initial population Ã =



1 0 1

1 1 1

0 1 1

0 1 0


and obtain another optimal
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breeding strategy. Although such dynamic decision making is out of the scope of this study, it

could be a promising direction for future research.
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CHAPTER 3. AN EXACT ALGORITHM FOR THE BILEVEL MIXED

INTEGER LINEAR PROGRAMMING PROBLEM UNDER THREE

SIMPLIFYING ASSUMPTIONS

A paper submitted to Computers and Operations Research, under review.

Pan Xu, Lizhi Wang, Shan Jin

3.1 Abstract

We present an exact algorithm for the bilevel mixed integer linear programming (BMILP)

problem under three simplifying assumptions. Although BMILP has been studied for decades

and widely applied to various real world problems, there are only a handful of algorithms.

Compared to these existing ones, our new algorithm relies on weaker assumptions, explicitly

considers infinite optimal, infeasible, and unbounded cases, and is proved to terminate infinitely

with the correct output. We report results of our computational experiments on a small library

of BMILP test instances, which we have created and made publicly available online.

3.2 Introduction

We present an exact algorithm for the bilevel mixed integer linear programming (BMILP)

problem under three simplifying assumptions. A general BMILP is defined as follows:

max
x,y

ζ1 = c>x+ d>1 y (3.1)

s. t. A1x+B1y ≤ b1 (3.2)

y ∈ argmaxỹ{ζ2 = d>2 ỹ : A2x+B2ỹ ≤ b2; ỹ ≥ 0; ỹJ ∈ Z|J |} (3.3)

x ≥ 0;xI ∈ Z|I|, (3.4)
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where A1 ∈ Rm1×n1 , A2 ∈ Rm2×n1 , B1 ∈ Rm1×n2 , B2 ∈ Rm2×n2 , b1 ∈ Rm1×1, b2 ∈ Rm2×1,

c ∈ Rn1×1, d1 ∈ Rn2×1, d2 ∈ Rn2×1, I ⊆ {1, ..., n1}, and J ⊆ {1, ..., n2}. The three simplifying

assumptions that our algorithm relies upon are:

Assumption 1: I = {1, ..., n1}.

Assumption 2: ∃X ∈ Rn1 , x ≤ X.

Assumption 3: A2 ∈ Zm2×n1 .

Assumptions 1 and 2 mean, respectively, that all x variables are integral and bounded, and

Assumption 3 means that the A2 matrix is integral. Under these assumptions, the BMILP

becomes:

max
x,y
{Objective (4.1) : Constraints (4.2)-(4.3); 0 ≤ x ≤ X;x ∈ Zn1}. (3.5)

The BMILP model we try to solve belongs to the category of bilevel optimization, which has

been studied for decades. Pioneers of bilevel optimization models include Bracken and McGill

(1973, 1974, 1978), Aiyoshi and Shimizu (1981, 1984), Bard and Falk (1982), and Candler

and Townsley (1982), among others. Most early studies (Ben-Ayed, 1993; Ben-Ayed and Blair,

1990; Bialas and Karwan, 1984; Hansen et al., 1992; Wen and Hsu, 1991) focused on the simpler

case of bilevel linear programs. Since the 1990s, there has been increased attention on more

complex models with either nonlinear terms (Bard and Moore, 1990; Bard, 1988; Edmunds and

Bard, 1991, 1992) or discrete decision variables (Bard and Moore, 1992; DeNegre and Ralphs,

2009; Moore and Bard, 1990; Vicente et al., 1996). Comprehensive reviews of existing bilevel

optimization algorithms and applications can be found in Colson et al. (2007); Vicente and

Calamai (1994).

Bilevel optimization models have been applied to solve a variety of real world problems,

in which the hierarchical and competitive structure of decision making widely exists. These

applications include revenue management (Cote et al., 2003), network design (Constantin and

Florian, 1995), national security (Salmeron et al., 2004), network interdiction (Lim and Smith,

2007; Morton et al., 2007; Yao et al., 2007), national agriculture planning (Fortuny-Amat and
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McCarl, 1981), decentralized management of multidivisional firms (Bard, 1983), etc.

Despite its broad applicability, BMILP is intrinsically hard to solve, both theoretically and

computationally. This can be epitomized by the simple two-dimensional example from Köppe

et al. (2009):

Example 2.

sup
x,y

ζ1 = −x+ y

s. t. 0 ≤ x ≤ 1

y ∈ argmaxỹ{ζ2 = −ỹ : 0 ≤ ỹ ≤ 1; ỹ ≥ x; ỹ ∈ Z}.

It can be easily checked that: (i) the bilevel feasible region is {(0, 0)}∪ ((0, 1]×{1}), which

is non-convex and non-continuous, (ii) the supremum of ζ1 is 1, but it is not attainable, and

(iii) the optimal objective value of the continuous relaxation, which is 0, fails to provide an

upper bound for ζ1.

Perhaps due to these challenges, there has been insufficient attention and progress on theo-

retical and algorithmic development. We were able to find only a handful of BMILP algorithms.

In their seminal work (Moore and Bard, 1990), Moore and Bard presented perhaps the first

branch-and-bound algorithms for BMILP under the assumption that B1 = 0m1×n2 . The nature

of the algorithms is heuristic, which does not guarantee their correctness or finite termination.

However, they proved that the algorithms find the optimal solution if either I = {1, ..., n1}

or J = ∅. The case of unbounded BMILP is not discussed. DeNegre and Ralphs (2009)

invented another algorithm under the assumptions that I = {1, ..., n1}, J = {1, ..., n2}, and

B1 = 0m1×n2 . No proof of correctness and finite termination is provided, nor is the unbounded

case discussed. Relevant literature also includes Köppe et al. (2009) and Dempe (2001). Köppe

et al. (2009) is among the first to discover that, if the upper level contains continuous variables

and the lower level discrete ones, then the supremum of the BMILP may not be attainable even

if it finitely exists. However, the paper only proved the existence of an algorithm that solves
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BMILP in polynomial time when n2 is fixed, referring to parametric integer programming ap-

proaches (Eisenbrand and Shmonin, 2008), but no details of the algorithm were provided. The

algorithm proposed by Dempe (2001), although referred to as a discrete bilevel programming

algorithm, solves a different model, which is more similar to what is referred to as the inverse

mixed integer linear programming problem in Wang (2009).

The algorithm that we present here differs from existing ones in the following four aspects.

First, we allow for nonzero B1 matrix. This significantly raises the difficulty of the problem,

since obtaining a bilevel feasible solution is no longer straightforward. Nevertheless, allowing

for nonzero B1 could be practically imperative, because in many real world situations the con-

sequences of the lower level’s decisions must be taken into account by the upper level as explicit

constraints. Second, we allow the lower level to have both continuous and discrete variables.

Third, we explicitly consider all possible outcomes of a BMILP, be it infeasible, unbounded,

or finite optimal. Fourth, we prove that our algorithm will finitely terminate with the correct

output. The three simplifying assumptions are necessary for our algorithm. The first one is to

avoid the case of unattainable supremum, the second one is to ensure finite termination, and

the third one to avoid rounding errors.

The rest of the paper is organized as follows. We present and interpret the algorithm

step by step in Section 4.2, and report results from computational experiments in Section 4.3.

Concluding remarks are made in Section 4.4.

3.3 An Exact BMILP Algorithm

3.3.1 Algorithm

In this section, we present an algorithm, referred to as AlgBMILP, which takes A1, A2, b1,

b2, c, d1, d2, and J as input data and outputs the global optimal solution (x∗, y∗, ζ∗) to the

BMILP (3.5). The notations of ζ∗ = −∞ and ζ∗ = ∞ are used for infeasible and unbounded

cases, respectively.
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(x∗, y∗, ζ∗) = AlgBMILP(A1, A2, b1, b2, c, d1, d2, J)

Step 0: Initialize x∗ = ∅, y∗ = ∅, ζ∗ = −∞.

Step 1: Solve the high point problem (4.5)-(4.8).

max
x,y

ζ1 = c>x+ d>1 y (3.6)

s. t. A1x+B1y ≤ b1 (3.7)

A2x+B2y ≤ b2 (3.8)

0 ≤ x ≤ X,x ∈ Zn1 (3.9)

y ≥ 0, yJ ∈ Z|J |. (3.10)

1(a): If (4.5)-(4.8) is infeasible, then return: (3.5) is infeasible.

1(b): If (4.5)-(4.8) is unbounded, then go to Step 4.

1(c): Let (x0, y0) be an optimal solution to (4.5)-(4.8). If c>x0 +d>1 y
0 ≤ ζ∗, then return:

(3.5) is pruned.

1(d): Go to Step 2.

Step 2: Solve the lower level MILP (3.11)-(3.13) with the x0 from Step 1 as a parameter.

max
y

ζ2 = d>2 y (3.11)

s. t. A2x
0 +B2y ≤ b2 (3.12)

y ≥ 0, yJ ∈ Z|J |. (3.13)

2(a): If (3.11)-(3.13) is unbounded, then return: BMILP (3.5) is infeasible.
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2(b): Let ŷ be an optimal solution to (3.11)-(3.13). If d>2 y
0 ≥ d>2 ŷ, then return: (x0, y0)

is optimal to (3.5).

2(c): If A1x
0 + B1ŷ ≤ b1 and c>x0 + d>1 ŷ > ζ∗, then update (x∗ = x0, y∗ = ŷ, ζ∗ =

c>x0 + d>1 ŷ). In either case, go to Step 3.

Step 3: Create m2 + 1 new BMILP branches, recursively solve these using AlgBMILP from

Step 1, and return the global output (x∗, y∗, ζ∗). Each of these new BMILP branches

is the original BMILP (3.5) with additional constraints to (4.2). For i = 1, ...,m2, the

additional constraints for the ith BMILP branch are:

(A2x+B2ŷ)j ≤ (b2)j , ∀j = 1, ..., i− 1, and (3.14)

(A2x+B2ŷ)i ≥ (b2)i + εi. (3.15)

Here, εi is set to be εi = b(b2 − B2ŷ)ic + 1 − (b2 − B2ŷ)i, and the subscript i or j refers

to the ith or jth row of the corresponding vector. The additional constraints for the

(m2 + 1)st BMILP branch are:

A2x+B2ŷ ≤ b2, and (3.16)

d>2 y ≥ d>2 ŷ. (3.17)

In all of these Constraints (3.14)-(3.17), the ŷ from Step 2 is used as a parameter.

Step 4: Recursively use AlgBMILP to solve the following BMILP.

max
x,y
{0 : Constraints (4.2)-(4.3); 0 ≤ x ≤ X;x ∈ Zn1}. (3.18)

4(a): If (3.18) is infeasible, then return: BMILP (3.5) is infeasible.

4(b): Go to Step 5.
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Step 5: Solve the following MILP, and let ζ be the optimal objective value.

max
∆y

d>2 ∆y (3.19)

s. t. d>1 ∆y ≥ 1 (3.20)

B1∆y ≤ 0 (3.21)

B2∆y ≤ 0 (3.22)

∆y ≥ 0,∆yJ ∈ Z|J |. (3.23)

5(a): If ζ = 0, then stop: BMILP (3.5) is unbounded.

5(b): If ζ < 0, then recursively use AlgBMILP to solve the BMILP (3.5) with an additional

constraint c>x+ d>1 y ≤M added to Constraint (4.2). Here M is a large finite number.

This algorithm is diagrammed in Figure 4.2.

Step 0

?

�

5(b)

· · ·
-

-

Step 1

?

?

1(a)

@
@
�

�

1(c)

Step 2 � 1(d)
Step 3 � 2(c)

Step 4-1(b)
Step 5-4(b)

?

5(a)

UnboundedInfeasibleOptimal
?

2(b)
A
A
A
A
A
AU

2(a)
�
�
�
�
�
��

4(a)

Figure 3.1 Diagram of AlgBMILP.

3.3.2 Discussion

In this section, we explain the motivation of AlgBMILP, interpret all the steps, and then

prove its correctness and finite termination properties.
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AlgBMILP is motivated by the following three observations, for which we define (x∗, y∗)

and (x0, y0) as optimal solutions to the BMILP (3.5) and the high point problem (4.5)-(4.8),

respectively.

Observation 1 (Moore and Bard, 1990) The high point problem provides an upper bound

for BMILP: c>x∗ + d>1 y
∗ ≤ c>x0 + d>1 y

0.

Observation 2 If y0 is optimal to the lower level MILP (3.11)-(3.13), then (x0, y0) is optimal

to the BMILP (3.5).

Observation 3 For any ŷ ∈ Rn2 with ŷJ ≥ 0 and ŷJ ∈ Z|J |, we have either d>2 y
∗ ≥ d>2 ŷ or

(A2x
∗ +B2ŷ)i > (b2)i,∃i.

We interpret AlgBMILP step by step as follows.

Interpretation – Step 0: We set the initial value for output variables.

Interpretation – Step 1: The high point problem (4.5)-(4.8) can be infeasible, unbounded,

or finite optimal.

1(a): If (4.5)-(4.8) is infeasible, then (3.5) is infeasible.

1(b): If (4.5)-(4.8) is unbounded, then we need to examine further in Step 4, because

(3.5) can be infeasible, unbounded or finite optimal, as demonstrated in the following

BMILP example with d2 = 1, d2 = 0, or d2 = −1, respectively.

Example 3.

max
x,y

ζ1 = x+ y

s. t. 0 ≤ x ≤ 2, x ∈ Z

y ∈ argmaxỹ{ζ2 = d>2 ỹ : ỹ ≥ 1; ỹ ∈ Z}.
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1(c): If (4.5)-(4.8) has an optimal solution with c>x0 + d>1 y
0 ≤ ζ∗, then by Observation

1, (3.5) can be pruned. We emphasize that when all nodes of the branch-and-bound tree

are pruned, the original BMILP will be pronounced infeasible.

1(d): If (4.5)-(4.8) has an optimal solution with c>x0 + d>1 y
0 > ζ∗, then we need to

examine further in Step 2.

Interpretation – Step 2: Since (x0, y0) is feasible to (4.5)-(4.8), the lower level MILP (3.11)-

(3.13) can only be unbounded or finite optimal.

2(a): If (3.11)-(3.13) is unbounded, then (3.5) is infeasible. This is because (3.11)-(3.13)

must possess an extreme ray ∆y, which satisfies ∆y ≥ 0, ∆yJ ∈ Z|J |, B2∆y ≤ 0, and

d>2 ∆y > 0. As a result, for whatever x0, (3.11)-(3.13) must not possess a finite optimal

finite optimal solution, which implies that (4.1)-(4.4) is infeasible.

2(b) If d>2 y
0 ≥ d>2 ŷ, by Observation 2, (x0, y0) is optimal to (3.5).

2(c) If d>2 y
0 < d>2 ŷ, we check whether or not the incumbent solution (x∗, y∗) can be

updated by (x0, ŷ). In either case, we start the branch-and-bound process in Step 3.

Interpretation – Step 3: We create the m2 + 1 branches based on the feasibility of Con-

straint (3.16). The first m2 branches are m2 exclusive and exhaustive ways to violate

this constraint. Here the parameter εi is determined using the assumption that both

A2 and x are integral. The (m2 + 1)st branch satisfies Constraint (3.16), and we also

impose (3.17) due to Observation 3. As such, Step 3 eliminates a region that contains

(x0, y0) and partitions the remaining region into m2 + 1 branches, one of which contains

the optimal solutions to (3.5), if it exists. As all active nodes are solved, the incumbent

solution (x∗, y∗) is updated globally, which becomes the final output.

Interpretation – Step 4: The BMILP (3.18) can only be infeasible or finite optimal.
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4(a): If (3.18) is infeasible, then (3.5) is infeasible.

4(b): If (3.18) is optimal, then we need to examine further in Step 5 since (3.5) can be

unbounded or finite optimal, as demonstrated in Example 3.

Interpretation – Step 5: We first show that in Step 5, the MILP (3.19)-(3.23) always has a

feasible solution.

Lemma 1. If (4.5)-(4.8) is unbounded, then (3.19)-(3.23) has a feasible solution.

Proof. If (4.5)-(4.8) is unbounded, then there exists an extreme ray (∆x,∆y) such that

c>∆x+ d>1 ∆y ≥ 1 (3.24)

A1∆x+B1∆y ≤ 0 (3.25)

A2∆x+B2∆y ≤ 0 (3.26)

∆x = 0,∆y ≥ 0,∆yJ ∈ Z. (3.27)

These conditions can be further reduced to (3.20)-(3.23).

Next, we show that since a feasible solution to the BMILP (3.5) has been found in Step

4, the optimal objective value of (3.19)-(3.23) must be non-positive.

Lemma 2. If (3.19)-(3.23) has a feasible solution with d>2 ∆y > 0, then (3.5) is infeasible.

Proof. If ∆y satisfies (3.20)-(3.23) with d>2 ∆y > 0, then ∆y is also an extreme ray of

(3.11)-(3.13), which makes (3.5) infeasible.

5(a): We now show that if the optimal objective value of (3.19)-(3.23) is zero, then the

BMILP (3.5) must be unbounded.

Lemma 3. If (3.5) has a bilevel feasible solution and the optimal objective value of

(3.19)-(3.23) is d>2 ∆y∗ = 0, then (3.5) is unbounded.
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Proof. Let (x0, y0) be bilevel feasible to (3.5) and ∆y∗ optimal to (3.19)-(3.23). Then it

is easy to check that (x0, y0 + λ∆y∗) is bilevel feasible for feasible for all λ ∈ Z+. Since

d>1 ∆y∗ ≥ 1, we conclude that (4.1)-(4.4) is unbounded.

5(b): If the optimal objective value of (3.19)-(3.23) is negative, we need to further

examine because the BMILP (3.5) has a finite optimal solution.

Lemma 4. If (3.5) has a bilevel feasible solution and the optimal objective value of

(3.19)-(3.23) is d>2 ∆y∗ < 0, then (3.5) has a finite optimal solution.

Proof. We prove by contradiction. Suppose (3.5) is unbounded, then there must exist a

bilevel feasible solution, say (x0, y0), and an extreme ray ∆y such that d>1 ∆y ≥ 1 and

(x0, y0 + λ∆y) is bilevel feasible for all λ ∈ Z+. It is easy to check that ∆y is feasible to

(3.20)-(3.23) with d>2 ∆y = 0, which contradicts the fact that d>2 ∆y∗ < 0.

The parameterM in Step 5(b) can be obtained using the following procedure. (I) Initialize

M with any large positive number. (II) Solve the BMILP (3.5) with additional constraints

M ≤ c>x+ d>1 y ≤ 2M added to Constraint (4.2). If the BMILP is infeasible, then stop.

Otherwise set M = 2M and repeat (II).

In the following, we establish the correctness and finite termination of AlgBMILP.

Theorem 1. AlgBMILP terminates finitely with the correct output for (3.5).

Proof. Since a BMILP may be finite optimal, unbounded, or infeasible, we prove for these three

possibilities separately.

For a BMILP (3.5) with a finite optimal solution, there are two possible outlets. The more

obvious but less frequently observed one is 2(b), under which case the finite optimality claim is

guaranteed by Observation 2. The other outlet is a combination of 2(c) and 1(c). The former

keeps updating the incumbent solution, which will be claimed optimal after all nodes of the

branch-and-bound tree have been pruned in the latter case. We need to prove two more points:

(I) Step 3 never eliminates the optimal solution, and (II) the branch-and-bound tree has a finite
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depth.

Point (I) can be proved using Observation 3, which means that when (3.16) is satisfied, the

optimal solution to (3.5) must also satisfy (3.17). Since the first m2 branches are m2 exclusive

and exhaustive ways to violate (3.16) and the (m2 + 1)st branch satisfies (3.16), the optimal

solution must be contained in one of these branches.

To prove Point (II), consider any given path from level 0 to level k (finite or infinite) of the

branch-and-bound tree. Let {(x0, y0), (x1, y1), ..., (xk, yk)} be the optimal solutions to (4.5)-

(4.8) of the path. We can show that at most two of these solutions can share the same x.

Suppose xi = xj for some i < j, then xi must have survived the eliminating cut (3.15) gener-

ated in the ith iteration by hiding in the (m2 + 1)st branch. However, when xj = xi becomes

the optimal solution to (4.5)-(4.8) of level j, yj needs to satisfy cut (3.17) generated from level

i, which qualifies (xj , yj) to be optimal to (3.5) in Step 2(b), thus the algorithm will terminate

and the depth of this path is k = j. Since x can only take integer values in a bounded region,

the number of different x values is finite, so is the depth of the branch-and-bound tree.

For an unbounded BMILP (3.5), it is easy to see that (3.5) must directly follow 1(b) and

4(b) to Step 5. By Lemmas 1-4, 5(a) is the only possible outcome.

For an infeasible BMILP (3.5), it is easy to see that (4.1)-(4.4) will not terminate via 2(b)

or 5(a). It is also obvious that in the case of 1(a), 2(a), or 4(a), (4.1)-(4.4) is indeed infeasible.

The only other possible outlet of the algorithm is 1(c), when all nodes in the branch-and-bound

tree are pruned, which means that (4.1)-(4.4) is infeasible.

3.4 Computational Experiments

In this section, we report our computational experiences with AlgBMILP. This algorithm

is implemented in Matlab using TOMLAB/CPLEX as the MILP solver. Computational ex-

periments are executed on a desktop computer with a 3 GB ram and a 2.4 GHz CPU. We
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created 11 BMILP test instances, with 8 from MIPLIB (Achterberg et al., 2006), one from Yao

et al. (2007), and two from construction. For the 8 MIPLIB instances, we used the MILP data

for B2, d2, and J for the lower level, and randomly created other parameters. If an instance

appeared trivial (e.g., terminated in one iteration or less than a second), we replaced it with

another randomly created set of parameters. The instance “Yao” is a modified version from a

case study in Yao et al. (2007), which formulated a power system network defense problem as a

trilevel optimization problem and designed a heuristic algorithm to solve it. We reformulated

the problem as an equivalent BMILP and were able to obtain the global optimal solution. We

also manually generated two instances with one being infeasible and the other unbounded.

Computational results are summarized in Table 4.1. All of these test instances as well as our

solutions are posted online at http://lzwang.public.iastate.edu/bmilplib.html.

Table 3.1 Computational performance of AlgBMILP.
Instance m1, n1,m2, n2 ζ∗ CPU time # Nodes visited

pk1 10, 10, 45, 86 1,027 4m-9s 28,886

marshare1 100, 100, 6, 62 844 2m-52s 8

marshare2 100, 100, 7, 74 1,213 3m-28s 9

pp08a 10, 10, 136, 240 1,532 2m-30s 4,001

noswot 10, 10, 364, 128 4,248 47s 3,406

mas74 10, 10, 13, 151 741 6m-21s 1,329

mas76 10, 10, 12, 151 167 1h-28m-32s 14

misc07 10, 10, 424, 260 1,327 32m-14s 42,157

Yao 47, 23, 896, 294 –1,854,313 8m-27s 55

inf5 5, 5, 5, 5 –∞ 22m-32s 211,111

unbd10 10, 10, 12, 152 ∞ 1h-38m-24s 1 + 1∗

∗ It took one node to find an extreme ray and another one a bilevel feasible solution.

3.5 Conclusion

In this paper, we present an exact algorithm for the BMILP problem under three simplify-

ing assumptions. Our study makes the following contributions to the existing literature. First,

AlgBMILP relies on weaker simplifying assumptions than existing algorithms. Second, our algo-
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rithm explicitly considers all possible outcomes of a BMILP, including infeasible, unbounded,

and finite optimal. Third, we provide a proof of the correctness and finite termination of

AlgBMILP. Fourth, we demonstrate the efficiency of our algorithm by reporting our computa-

tional results on small- to medium-sized instances. Last but not least, we have created a library

of BMILP test instances for benchmark and comparison of future algorithms.

Our future work is to relax the first two simplifying assumptions that AlgBMILP is dependent

upon. To allow for both continuous and discrete variables on the upper level, the algorithm

should be able to obtain an ε-optimal solution (Köppe et al., 2009) when the supremum is

not attainable. It may require a completely new algorithm to relax Assumption 2, without

which AlgBMILP may fail to terminate. Assumption 3 can be easily relaxed to be A2 ∈ Qm2×n1 ,

which is a common assumption made by most literature on discrete optimization. Moreover,

the formulation (4.1)-(4.4) implicitly makes an optimistic assumption that the upper level can

choose the lower level’s optimal solution when multiple ones exist. It would be interesting to

extend the model and algorithm to a pessimistic setting by replacing Constraint (4.3) with

y ∈ argmin{d>1 y : Constraint (4.3)},

which means that the lower level will choose the worst optimal solution for the upper level

when multiple ones exist.

We conclude with a counterexample to demonstrate the necessity of Assumption 2 for

AlgBMILP.

Example 4.

max
x,y

ζ1 = x− y

s. t. x ≥ 1, y ≥ 2x, x ∈ Z

y ∈ argmaxỹ{ζ2 = −ỹ : ỹ ≥ x; ỹ ≥ 0; ỹ ∈ Z}.

As illustrated in Figure 3.2, the solid dots are feasible solutions to the high point problems,

whereas the circles are the optimal solutions to the lower level, which all lie on the 45◦ line.
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Obviously, this BMILP is infeasible, but AlgBMILP would solve a series of high point problems

with the optimal solutions being {(1, 2), (2, 4), (3, 6), ...}, none of which would be optimal to

the lower level, thus the algorithm would go on without termination.
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Figure 3.2 Illustration of Example 3.
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CHAPTER 4. THE WATERMELON ALGORITHM FOR THE BILEVEL

INTEGER LINEAR PROGRAMMING PROBLEM

4.1 Introduction

We present the so-called watermelon algorithm for the bilevel integer linear programming

(BILP) problem defined as follows.

max
x,y

ζ = c>x+ d>1 y (4.1)

s. t. A1x+B1y ≤ b1 (4.2)

y ∈ argmaxỹ{d>2 ỹ : A2x+B2ỹ ≤ b2; ỹ ∈ Zn2} (4.3)

x ∈ Zn1 . (4.4)

Here A1 ∈ Rm1×n1 , B1 ∈ Rm1×n2 , b1 ∈ Rm1 , c ∈ Rn1 , d1 ∈ Rn2 , and d2 ∈ Rn2 are real number

parameters and, without loss of generality, A2 ∈ Zm2×n1 , B2 ∈ Zm2×n2 , and b2 ∈ Zm2×1 are

assumed to be integral. The upper level’s decision variable are x and y, and the latter is also

required by Constraint (4.3) to be an optimal solution to the lower level problem.

BILP belongs to a broader class of bilevel discrete optimization models, which has found

many applications in a variety of real-world problems, including large steel structure design

(Sarma and Adeli, 2001), natural gas cash-out (Dempe et al., 2005), network design (Gao et al.,

2005), taxation policy (He et al., 2011; Zhou et al., 2011), network interdiction (Morton et al.,

2007; Lim and Smith, 2007), and critical infrastructure defense (Scaparra and Church, 2008;

Yao et al., 2007). In these and many other applications, decisions are made in a hierarchical

structure, and integer variables are indispensable to describe discrete decisions such as logical

decisions, mutually exclusive choices, and fixed costs.

Bilevel discrete optimization problems are notoriously hard to solve, and there are many
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pitfalls when standard single-level discrete optimization theories and algorithms are directly

applied (DeNegre and Ralphs, 2009; Moore and Bard, 1990; Vicente et al., 1996). For example,

if the upper-level contains continuous variables and the lower-level contains integer variables,

then an optimal solution may not exist because the supremum of the objective value may be

unattainable albeit finite. Such a pathological instance can be found in Köppe et al. (2009).

Moreover, if integrality requirements on x and y are relaxed, then the BILP reduces to a bilevel

linear program (BLP). However, even if the optimal solution to the BLP relaxation happens to

be integral, it may or may not be optimal to BILP. Such a pathological instance can be found

in Moore and Bard (1990). In fact, the optimal objective value to the BLP relaxation provides

neither an upper bound nor a lower bound for BMILP. For instance, the BLP relaxation may

be infeasible when the BILP has an optimal solution. A more useful relaxation is the so-called

high point problem (HPP) (Candler and Townsley, 1982; Moore and Bard, 1990):

max
x,y

c>x+ d>1 y (4.5)

s. t. A1x+B1y ≤ b1 (4.6)

A2x+B2y ≤ b2 (4.7)

x ∈ Zn1 , y ∈ Zn2 . (4.8)

This integer linear program (ILP) removes the lower-level objective function and allows the

upper-level to unilaterally determine both x and y; thus, it provides an upper bound for the

BILP.

The literature on discrete bilevel optimization algorithms is sparse. Most of it is approx-

imate or heuristic in nature (Bard and Moore, 1992; Moore and Bard, 1990) and/or relies on

simplifying assumptions. For example, the bilevel feasible set is assumed to be bounded in

Köppe et al. (2009); it is further assumed in DeNegre and Ralphs (2009); Moore and Bard

(1990) that not only the bilevel feasible set is nonempty and bounded but also the lower level

feasibility region is nonempty for any feasible upper level decision; all lower level decisions are

assumed to have finite lower and upper bounds in Gümüş and Floudas (2005).

The watermelon algorithm we present in this paper differs from previous algorithms by

having the following four features: (1) solves all BILP instances defined in (4.1)-(4.3) without
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additional simplifying assumptions, (2) terminates in a finite number of iterations, (3) correctly

identifies unbounded or infeasible instances, and (4) obtains a global optimal solution if one

exists. Notice that a BILP defined in (4.1)-(4.3) only has three possible outcomes: infeasible,

unbounded, or optimal (having a global optimal solution).

Here we clarify some definitions that will be used in the rest of the paper. The lower level

problem (LLP) refers to the following parametric ILP (4.9)-(4.11), denoted as L(x):

max
y

d>2 y (4.9)

s. t. A2x+B2y ≤ b2 (4.10)

y ∈ Zn2 . (4.11)

A solution (x, y) is said to be upper level feasible if it satisfies Constraints (4.2) and (4.4).

A solution (x, y) is said to be lower level feasible/optimal if y is feasible/optimal to L(x). A

solution (x, y) is HPP feasible if it satisfies Constraints (4.6)-(4.8). A solution (x, y) is said to

be bilevel feasible if it satisfies Constraints (4.2)-(4.4); otherwise it is said to be bilevel infeasible.

The following examples demonstrate the difference between infeasible, unbounded, and optimal

BILPs.

Example 5. The BILP (4.12)-(4.14) is infeasible because the lower level is unbounded for any

x, thus a solution (x, y) that satisfies Constraint (4.14) does not exist.

max
x,y

x (4.12)

s. t. x ≥ 2, x ∈ Z (4.13)

y ∈ argmaxỹ{ỹ : ỹ ≥ x; ỹ ∈ Z}. (4.14)

Example 6. The BILP (4.15)-(4.17) is unbounded because for any real number K, (x = 2, y =

max{dKe, 2}) is a bilevel feasible solution with ζ(x, y) ≥ K.

max
x,y

ζ = y (4.15)

s. t. x ≥ 2, x ∈ Z (4.16)

y ∈ argmaxỹ{0 : ỹ ≥ x; ỹ ∈ Z}. (4.17)
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Example 7. The BILP (4.18)-(4.20) has an optimal solution (x∗ = 0, y∗ = 0), which cannot

be dominated by any bilevel feasible solution.

max
x,y

y (4.18)

s. t. x ≥ 0, x ∈ Z; (4.19)

y ∈ argmaxỹ{−ỹ : 0 ≤ ỹ ≤ 2x; ỹ ∈ Z}. (4.20)

We also present a sufficient condition to identify infeasible BILPs.

Lemma 5. For any x ∈ Rn1, if L(x) is unbounded, then the BILP (4.1)-(4.4) is infeasible.

Proof. If L(x) is unbounded, then it must possess an extreme ray ∆y such that ∆y ∈ Zn2 ,

B2∆y ≤ 0, and d>2 ∆y ≥ 1. As a result, Constraint (4.3) can never be satisfied, thus the BILP

(4.1)-(4.4) is infeasible.

4.2 The Watermelon Algorithm for BILP

In this section we present the watermelon algorithm for BILP, which is named after the fruit

due to some interesting analogies we can draw between the solution technique and how one

could eat a watermelon. Several definitions are made metaphorically as follows. We define the

watermelon as the polyhedron {(x, y) : A2x+B2y ≤ b2}. As such the facets of the watermelon

will be referred to as the watermelon skin, and the interior of the watermelon will be called

the watermelon flesh. Watermelon seeds are defined as those solutions that are HPP feasible

but bilevel infeasible. The idea of the watermelon algorithm is the following. We first solve the

constrained HPP, which is defined as the HPP within the watermelon region. If the constrained

HPP solution is bilevel feasible, then it is optimal to the BILP; otherwise it is a watermelon

seed. Next we remove the seed from the watermelon and solve the new constrained HPP again.

These steps are repeated and a new seed is removed from the watermelon in each iteration until

the optimal BILP solution is found.

To accelerate this algorithm, when a constrained HPP solution is found to be a seed, rather

than picking the single seed out, we use a scoop to carve out a piece of watermelon flesh that

also contains as many surrounding seeds as possible. We define a scoop as the parametric
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polyhedron {(x, y) : A2x + B2y ≤ b2 − t}. Here t ∈ Rm2
+ can be interpreted as the distance

between the scoop and the watermelon skin. Notice that the scoop has the same shape with

the watermelon. When a scoop is designed to carve out a seed, there are three criteria: (i) the

scoop should contain as many watermelon seeds as possible; (ii) the scoop must enclose the

target seed (optimal solution to the previous constrained HPP); and (iii) the scoop must not

contain any bilevel feasible solution. We use the following parametric integer linear program

(ILP) to design this scoop, which will be referred to as the scoop problem (SP), denoted as

S(xH, yH):

min
∆y,t

1>t (4.21)

s. t. d>2 ∆y ≥ 1 (4.22)

B2∆y ≤ t (4.23)

0 ≤ t ≤ b2 −A2x
H −B2y

H (4.24)

t ∈ Zm2 ,∆y ∈ Zn2 . (4.25)

Let (∆yS, tS) be an optimal solution to S(xH, yH), where (xH, yH) is the target seed. The

objective function (4.21) meets criterion (i). Intuitively, a smaller t means a larger scoop and

more seeds. Constraint (4.24) ensures criterion (ii). To show that criterion (iii) is guaranteed,

we present the following lemma.

Lemma 6. If (∆yS, tS) is an optimal solution to (4.21)-(4.25), then no bilevel feasible solution

exists in the scoop defined by A2x+B2y ≤ b2 − tS.

Proof. Prove by contradiction. Suppose (x0, y0) is a bilevel feasible solution enclosed in the

scoop, then it is easy to check that (x0, y0 +∆yS) dominates (x0, y0) in the lower level problem,

which contradicts the assumed lower level optimality of (x0, y0).

We also discuss two more interesting properties of the SP in the following two lemmas.

Lemma 7. An HPP feasible solution (xH, yH) is a watermelon seed if and only if the SP

S(xH, yH) has an optimal solution.
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Proof. The “only if” direction: If (xH, yH) is a watermelon seed, then by definition there must

exist a ∆y0 such that A2x
H + B2(yH + ∆y0) ≤ b2 and d>2 ∆y0 ≥ 1 (due to the integrality

assumption on d2). It is easy to check that (∆y = ∆y0, t = max{B2∆y, 0}) is a feasible

solution to (4.21)-(4.25). Since (4.21)-(4.25) is bounded, it must have an optimal solution.

The “if” direction: Let (∆y0, t0) be an optimal solution to (4.21)-(4.25). Then it is easy to

check that (xH, yH + ∆y0) dominates (xH, yH) in the lower level problem, thus the latter is a

watermelon seed.

Lemma 8. If (∆y = ∆yS, t = tS) is an optimal solution to (4.21)-(4.25), so is (∆y = ∆yS, t =

max{B2∆yS, 0}).

Proof. First, we show that (∆y = ∆yS, t = max{B2∆yS, 0}) is a feasible solution to (4.21)-

(4.25). From Constraint (4.23) and t ≥ 0, we have

max{B2∆yS, 0} ≤ tS, (4.26)

which ensures the feasibility of (4.24). By (4.26), we also have 1>max{B2∆yS, 0} ≤ 1>tS,

which verifies the optimality of (∆y = ∆yS, t = max{B2∆yS, 0}).

After the scoop of flesh is carved out, the remaining part of the watermelon becomes non-

convex, because it is inside the larger convex watermelon but outside the smaller convex scoop.

To solve the constrained HPP, we propose to first partition the watermelon into m2 + 1 pieces.

For i = 1, ...,m2, the ith piece is defined as {(x, y) : (A2x + B2y)j ≤ (b2 − tS)j , ∀j = 1, ...i −

1; (b2− tS)+1 ≤ (A2x+B2y)i ≤ (b2)i; (A2x+B2y)j ≤ (b2)j ,∀j = i+1, ...,m2}. The (m2 +1)st

piece is the scoop of flesh. Then the constrained HPP can be solved separately within the first

m2 pieces in a branch-and-bound framework.

Although the HPP originated from decades ago (Bialas and Karwan, 1984; Candler and

Townsley, 1982; Moore and Bard, 1990), it has almost always been assumed to be bounded,

which restricts the applicability of previous algorithms to bounded BILPs only. It is easy to see

that the HPP of an unbounded BILP must be unbounded. However, the reverse is not true.

In fact, the HPPs of Examples 5-7 are all unbounded, although the BILPs have three different

outcomes. Therefore, it is necessary for a thorough algorithm to be able to differentiate the
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causes of unbounded HPPs. For such purpose, we present the following ILP, which will be

referred to as the blind scoop problem (BSP):

min
x,y,∆y,t

1>t (4.27)

s. t. d>2 ∆y ≥ 1 (4.28)

B2∆y ≤ t (4.29)

A1x+B1y ≤ b1 (4.30)

A2x+B2y ≤ b2 − t (4.31)

t ∈ Zm2
+ , x ∈ Zn1 , y ∈ Zn2 ,∆y ∈ Zn2 . (4.32)

Similar to the SP, the BSP also tries to design a scoop to carve out a piece of watermelon flesh.

The difference is, since no optimal solution is provided by the HPP, the BSP needs to search

for a watermelon seed by itself, which explains the word “blind” in the name. By Lemma 7,

the existence of a seed is a necessary and sufficient condition for the BSP to have an optimal

solution. If BSP finds a seed and a scoop to enclose it, then no bilevel feasible solution is

admitted to the scoop.

Lemma 9. If (xB, yB,∆yB, tB) is an optimal solution to (4.27)-(4.32), then no bilevel feasible

solution exists in the scoop defined by A2x+B2y ≤ b2 − tB.

Proof. Similar to the proof of Lemma 6.

If the unboundedness of the HPP was caused by these seeds, then the removal of the scoop

may make the constrained HPP bounded in the next iteration. If it turns out that the scoop

contains the entire watermelon (t = 0), then the BILP is apparently infeasible:

Lemma 10. If (xB, yB,∆yB, tB = 0) is an optimal solution to (4.27)-(4.32), then the BILP

(4.1)-(4.4) is infeasible.

Proof. If tB = 0 is optimal to (4.27)-(4.32), then ∆yB becomes an integral extreme ray of the

LLP. As such, Constraint (4.3) can never be satisfied, and the BILP (4.1)-(4.4) is therefore

infeasible.
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However, as the following lemma explains, if BSP fails to find a seed, then the unbounded-

ness can only be caused by bilevel feasible solutions, thus the BILP is indeed unbounded.

Lemma 11. If (4.5)-(4.8) is unbounded and (4.27)-(4.32) infeasible, then the BILP (4.1)-(4.4)

is unbounded.

Proof. Assuming that (4.5)-(4.8) is unbounded and (4.27)-(4.32) infeasible, we show that for

any real number K, there exists a bilevel feasible solution (xK , yK) such that c>xK+d>1 yK ≥ K.

Since (4.5)-(4.8) is unbounded, for any real number K, there exists a feasible HPP solution

(xH, yH) such that c>xH + d>1 y
H ≥ K. Since (4.27)-(4.32) is infeasible, (4.21)-(4.25) is also

infeasible. By Lemma 7, (xH, yH) is bilevel feasible.

The following lemma presents a similar result with Lemma 8.

Lemma 12. If (∆y = ∆yB, t = tB) is optimal to (4.27)-(4.32), so is (∆y = ∆yB, t =

max{B2∆yB, 0}).

Proof. Similar to the proof of Lemma 8.

To accommodate the branch-and-bound structure of the watermelon algorithm, we define

the parametric versions of HPP and BSP below. The parametric high point problem (PHPP),

denoted as H(l, u), is defined as the following ILP.

max
x,y
{Objective (4.5) : Constraints (4.6) and (4.8); l ≤ A2x+B2y ≤ u}. (4.33)

The parametric blind scoop problem (PBSP), denoted as B(l, u), is defined as the following

ILP.

max
x,y
{Objective (4.27) : Constraints (4.28)-(4.30) and (4.32); l ≤ A2x+B2y + t ≤ u}. (4.34)

We are now ready to present the watermelon algorithm for BILP, also referred to as

WAlgBILP. WAlgBILP takes A1, A2, B1, B2, b1, b2, c, d1, d2 as input data and outputs the global

optimal solution (x∗, y∗, ζ∗) to the BILP (4.1)-(4.4). The notations of (x∗ = ∅, y∗ = ∅, ζ∗ = −∞)

and (x∗ = ∅, y∗ = ∅, ζ∗ = +∞) are used for infeasible and unbounded cases, respectively.

WAlgBILP is diagrammed in Figure 4.2.

(x∗, y∗, ζ∗) = WAlgBILP(A1, A2, B1, B2, b1, b2, c, d1, d2)
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Step 0: Create the root node: (l1 = −∞m2 , u1 = b2, z
1 = +∞). A node k is characterized by

(lk, uk, zk). The first two parameters feed to the PHPP and PBSP and the third one is

an upper bound of its optimal objective value. Initialize x∗ = ∅, y∗ = ∅, ζ∗ = −∞, N = 1.

Here, N is the number of remaining nodes. Go to Step 1.

Step 1: For all j ∈ {1, ..., N} such that zj ≤ ζ∗ or lj � uj , remove node j. Update N as the

number of remaining nodes.

1(a): If N = 0 and x∗ 6= ∅, then stop. Output (x∗, y∗, ζ∗) as the optimal solution.

1(b): If N = 0 and x∗ = ∅, then stop. The BILP (4.1)-(4.4) is infeasible.

1(c): Select a node k ∈ {1, ..., N}, set l̂ = lk and û = uk, remove this node, reduce N by

1, and go to Step 2.

Step 2: Solve the PHPP H(l̂, û).

2(a): If H(l̂, û) is infeasible, then go to Step 1.

2(b): If H(l̂, û) is unbounded, then go to Step 6.

2(c): Let (xH, yH) be an optimal solution to H(l̂, û). If c>xH + d>1 y
H ≤ ζ∗, then go to

Step 1.

2(d): Go to Step 3.

Step 3: Solve the LLP L(xH).

3(a): If L(xH) is unbounded, then stop. The BILP (4.1)-(4.4) is infeasible.

3(b): Let yL be an optimal solution to L(xH). If d>2 y
H ≥ d>2 y

L, then update (x∗ =

xH, y∗ = yH, ζ∗ = c>xH + d>1 y
H) and go to Step 1.

3(c): If A1x
H + B1y

L ≤ b1, c>xH + d>1 y
L > ζ∗, and d>1 y

H ≤ d>1 y
L, then update (x∗ =

xH, y∗ = yL, ζ∗ = c>xH + d>1 y
L) and go to Step 1.

3(d): If A1x
H +B1y

L ≤ b1 and c>xH + d>1 y
L > ζ∗, then update (x∗ = xH, y∗ = yL, ζ∗ =

c>xH + d>1 y
L). In either case, go to Step 4.

Step 4 Solve the SP S(xH, yH) and let (∆yS, tS) be an optimal solution. Go to Step 5.
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Step 5: Let T be the number of positive elements in tS (from either Step 4 or Step 6) and π the

set of row indices of the T positive elements in tS. Create T new nodes. For j = 1, ..., T ,

node N + j characterized by (lN+j , uN+j , zN+j) is defined as:

lN+j
i =

 (b2 − tS)i + 1, i = π(j);

l̂i, otherwise.
(4.35)

uN+j
i =

 (b2 − tS)i, i ≤ π(j)− 1;

ûi, otherwise.
(4.36)

zN+j =

 c>xH + d>1 y
H, Step 4 was the previous step;

+∞, Step 6 was the previous step.
(4.37)

Increase N by T . Go to Step 1.

Step 6: Solve the PBSP B(l̂, û).

6(a): If B(l̂, û) is infeasible, then stop. The BILP (4.1)-(4.4) is unbounded.

6(b): Let (xS, yS,∆yS, tS) be an optimal solution to B(l̂, û). If tS = 0, then stop. The

BILP (4.1)-(4.4) is infeasible.

6(c): Go to Step 5.

In the following, we establish the correctness and finite termination of WAlgBILP. First, we

define the following parametric MILP, which is denoted as F(u):

max
∆y,t
{f(u) = 1>t : Constraints (4.22) and (4.23); 0 ≤ t ≤ u; ∆y ∈ Zn2}. (4.38)

Here the optimal objective value of F(u) is denoted as f(u). The following lemmas present

some important properties of F(u).

Lemma 13. For any u1 ∈ Rm2
+ , u2 ∈ Rm2

+ , and u1 ≤ u2, we have f(u1) ≥ f(u2).

Proof. One only needs to observe that the optimal solution to F(u1) must be feasible to F(u2),

but the reverse statement is not true.

Lemma 14. {f(u)|u ∈ Zm2
+ } is bounded.
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Figure 4.1 Diagram of AlgBILP.

Proof. Prove by contradiction. Suppose f(u) is unbounded, then there must exist an infi-

nite sequence S0 = {uk ∈ Zm2
+ },∀k ∈ N with f(uk) < f(ul),∀k < l; k, l ∈ N. Define

G =
⋃m2
i=1

⋃u1(i)
j=0 G(i, j), where G(i, j) = {u|u ∈ Zm2

+ , u(i) = j}. By definition, S0 ⊆ G.

By the pigeonhole principle (Jukna and Jukna, 2011), there exist i1, j1, and an infinite sub-

sequence S1 ⊆ S0 such that S1 ⊆ G(i1, j1). Without loss of generality, assume i1 = 1. As such,

we get an infinite subset N1 ⊆ N such that S1 = {uk ∈ Zm2
+ }, k ∈ N1 is an infinite sequence

with uk(1) = j1, f(uk) < f(ul),∀k < l; k, l ∈ N1. Recursively applying the same principle, we

get an infinite subset Nm2 ⊆ Nm2−1 ⊆ ... ⊆ N1 such that Sm2 = {uk ∈ Zm2
+ }, k ∈ Nm2 with

uk(1) = j1, uk(2) = j2, ..., uk(m2) = jm2 , f(uk) < f(ul), ∀k < l; k, l ∈ Nm2 . Apparently, Sm2

does not exist.

Now we present the proof for the correctness and finite termination of WAlgBILP.

Theorem 2. WAlgBILP finitely terminates with the correct output for (4.1)-(4.4).

Proof. Our proof consists of five parts: (i) no bilevel feasible solutions is eliminated without
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comparison with the incumbent in the algorithm; (ii) Condition 1(a) is sufficient to claim the

optimality of a BILP, (iii) Conditions 1(b), 3(a), and 6(b) are sufficient to claim the infeasibility

of a BILP, (iv) Condition 6(a) is sufficient to claim the unboundedness of a BILP, and (v) the

algorithm will terminate in a finite number of iterations.

Part (i): The branching Step 5 only eliminates the scoop of watermelon flesh, which, by

Lemmas 6 and 9, contains no bilevel feasible solutions. All bilevel feasible solutions encountered

are compared to the incumbent in Steps 1 and 2 before they either become the new incumbent

or are pruned.

Part (ii): Under Condition 1(a), all active nodes have been evaluated, thus the incumbent

solution is the optimal one to the BILP.

Part (iii): Under Condition 1(b), all active nodes have been evaluated and no bilevel feasible

solution was found, so the BILP must be infeasible. Under Conditions 3(a) and 6(b), the

infeasibility of the BILP is ensured by Lemmas 5 and 11, respectively.

Part (iv): By Lemma 10.

Part (v): Lemma 14 implies that the optimal objective value of S(x, y) is bounded, regard-

less of the parameters x and y. For that matter, the optimal objective value of B(l, u) is also

bounded, regardless of the parameters l and u. Let K denote a bound for both S(x, y) and

B(l, u). Then for all i = 1, ...,m2, the possible bounds (l, u) that characterize any node can only

lie within {−∞, (b2)i−K, (b2)i−K+1, ..., (b2)i}, which is a finite set. Moreover, the branching

Step 5 ensures that no two nodes have the same bounds. Therefore, the branch-and-bound tree

of WAlgBILP only contains a finite number of possible nodes.

4.3 Computational Experiments

In this section we report our preliminary computational experience with WAlgBILP. First,

we apply WAlgBILP on the classic example from Moore and Bard (1990). In Step 2, the HPP

solution (2, 4) is obtained, which is found to be a seed in Step 3. In Step 4, a scoop of watermelon

flesh is computed, which is colored as red in Figure 3.2. In fact, this scoop is able to encloses

all watermelon seeds (solid squares) in this particular example, and all other integer solutions

(empty squares or heart) are bilevel feasible. Apparently, the optimal solution (2,2) is easily
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found in the next iteration. In contrast, the algorithm in Moore and Bard (1990) takes a lot

more iterations to find the same optimal solution.

max x+ 10y
s. t. x integral

y ∈ argmin{y
non-grey area

y integral}

flesh

seed

skin

-

66

Figure 4.2 A BILP example from Moore and Bard (1990)

We also test the algorithm using eleven randomly generated instances. For each case, we

first set up the sizes m1,m2, n1, n2 and boundaries that values in each parameter range from and

then randomly output one. Table 4.1 summarizes some details about these instances including

dimension, boundedness of HPP, and optimal objective value. The algorithm is implemented in

Matlab using TOMLAB/CPLEX as the MILP solver. Computational experiments are executed

on a desktop computer with a 3 GB ram and a 2.4 GHz CPU. Computational results are

summarized in Table 4.2. Three searching strategies are used in Step 1(c) to select the new

node to visit: depth-first, breadth-first, and largest-z-first. Their computational time (in the

hour-minute-second format) and number of nodes visited are reported in Table 4.2. Although

no strategy is the clear dominator, the largest-z-first strategy appears to be more promising

than the other two.

4.4 Conclusions and Discussions

This paper presents the watermelon algorithm for BILP, which makes several contribution

to the literature. First, it is based on a novel approach. Rather than using branch-and-bound

or cutting plane methods to approximate the non-convex bilevel feasibility region from the

outside, as most previous algorithms do, it removes convex bilevel infeasibility regions from
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Table 4.1 Eleven test instances.
Instance m1 n1 m2 n2 HPP ζ∗

1 15 5 3,010 10 Bounded −∞
2 15 5 205 5 Bounded 546

3 55 5 105 5 Bounded 803

4 15 5 305 5 Bounded 640

5 10 5 2,005 5 Unbounded 310

6 10 5 505 5 Unbounded ∞
7 100 50 100 50 Bounded 75

8 105 55 100 50 Bounded 86

9 110 60 110 60 Bounded 86

10 120 70 110 60 Bounded 83

11 150 100 150 100 Bounded 189

the interior. Second, as far as we are aware of, it is the first algorithm that explicitly promises

to solve all possible BILPs, be it infeasible, unbounded, or optimal. Third, we draw analogies

between BILP and watermelon, which inspired the discovery of several interesting properties

of BILP in metaphorically described yet mathematically proved lemmas. Fourth, we provide a

proof of the correctness and finite termination of the algorithm.

A watermelon algorithm for the bilevel mixed integer linear program (BMILP) appears

to be a natural extension. However, the possibility of the unattainable supremum remains

a challenge. One alternative is to seek the ε-optimal solution (Köppe et al., 2009), which

promises to be within an ε-neighborhood of the supremum. Another extension is to apply a

similar idea to the watermelon algorithm on BLP, the continuous relaxation of BILP. There

are many previous BLP algorithms (Audet et al., 2007a, 1997, 2007b; Bard and Moore, 1990;

Brotcorne et al., 2009; Hansen et al., 1992; Júdice and Faustino, 1992; Önal, 1993; Wang et al.,

2007a), but most are based on using the complementarity slackness of the lower level linear

program as the upper level constraints. The watermelon algorithm, on the contrary, will create

a scoop that carves the entire interior out and leaves the skins under examination.
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Table 4.2 Computational results.

Instance
CPU time # Nodes visited

depth breadth best-z depth breadth largest-z

1 24m-26s 34m-10s out-of-memory 11,627 11,627 out-of-memory

2 3m-44s 59s 1m 10,062 2,580 2,580

3 7m-35s 4s 3s 26,425 194 160

4 18m-16s 22m-29s 16m-11s 31,863 24,770 16,822

5 2h-32m-46s 7m-19s 8m-41s 31,221 2,719 2,719

6 11m-23s 30m-31s 42s 15,696 10,928 870

7 3h-7m-48s 1h-59m-56s 36m-47s 10,642 8,194 4,074

8 34m-4s 18m-42s 25m-51s 953 514 758

9 1h-12m-14s 2m-27s 2m-40s 1,464 122 160

10 1h-2m-48s 11m-3s 4m-55s 1,755 234 176

11 17s 17s 17s 2 2 2
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CHAPTER 5. CONCLUSION

The research presented in the three papers here makes clear contributions to the area of

bilevel optimization algorithms and applications. We will discuss these contributions in detail

as follows.

In Chapter 2, we present an optimization approach to stacking desirable genes scattered

among multiple inbred lines into one population of target genotypes. The issue of biological

diversity is also taken into account by preserving desirable alleles of all allelic variations. We

formulate this problem as a multi-objective integer programming program, which yields Pareto

optimal stacking strategies with respect to two criteria: the likelihood of successfully obtaining

the target population of genotypes and the number of generations associated with a stacking

strategy. Numerical examples demonstrate the feasibility of using the proposed approach to

obtain Pareto optimal stacking strategies for smaller instances within one minute.

Our approach makes a distinct contribution to the animal and plant breeding practices and

theoretical studies on the genetic architecture of complex traits. To our best knowledge, this

is the first study that formulates the gene stacking problem as a multi-objective optimization

model. This approach takes advantage of the state-of-the-art algorithms and computer solvers

that can efficiently search the entire exponentially exploding (Servin et al., 2004) solution space

and provide solutions that can be mathematically proved to be optimal. The flexibility to

address biological diversity in the model also extends the model’s applicability to a wider range

of situations, in which all alleles cannot be simply differentiated as desirable or undesirable but

also exhibit distinctions in their desirability.

In Chapter 3, we propose an exact algorithm for the BMILP under three simplifying assump-

tions. Our study makes the following contributions to the existing literature. First, AlgBMILP

relies on weaker simplifying assumptions than existing algorithms. Second, our algorithm ex-
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plicitly considers all possible outcomes of a BMILP, including infeasible, unbounded, and finite

optimal. Third, we provide a proof of the correctness and finite termination of AlgBMILP.

Fourth, we demonstrate the efficiency of our algorithm by reporting our computational results

on small- to medium-sized instances. Last but not least, we have created a library of BMILP

test instances for benchmark and comparison of future algorithms.

In Chapter 4, we present the watermelon algorithm for BILP, which makes several contri-

butions to the literature. First, it is based on a novel approach. Rather than using branch-and-

bound or cutting plane methods to approximate the non-convex bilevel feasibility region from

the outside, as most previous algorithms do, it removes convex bilevel infeasible regions from

the interior. Second, as far as we are aware of, it is the first algorithm that explicitly promises

to solve all possible BILPs, be it infeasible, unbounded, or optimal. Third, we draw analogies

between BILP and watermelon, which inspired the discovery of several interesting properties

of BILP in metaphorically described yet mathematically proved lemmas. Fourth, we provide a

proof of the correctness and finite termination of the algorithm.

Our future work lies in the following directions:

• As for the first paper, to reformulate the plant breeding problem under a bilevel optimiza-

tion schema could be more practical and closer to the nature. We can try to interpret

the plant breeding problem in a hierarchical frame as follows: in the upper level breeders

select plants and provide breeding environments for certain purposes, while in the lower

level the breeding outcome is autonomously governed by the rules of genetics and proba-

bility. This hierarchical frame could be better captured by a nested maximum likelihood

function rather than being traded with the objective of the breeder on a Pareto fron-

tier. In fact, bilevel optimization model has been applied to a related genetic engineering

problem (Burgard et al., 2003).

• As for the second paper, natural extension should be to relax the first two assumptions

we made. BMILP would become much more complicated if we allow both levels have a

mixed integer setting. In this case, AlgBMILP should be modified to output an ε-optimal

solution (Köppe et al., 2009) when the supremum is not attainable. To relax the second
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assumption, we may need to add some essential changes to AlgBMILP. Just as shown

in the Example 4, AlgBMILP would fail to terminate finitely when feasible region for

the upper level variables is unbounded. The third assumption can be easily extended to

A2 ∈ Qm2×n1 , which was made explicitly or inexplicitly in most current related literature.

• As for the third paper, it would be interesting to extend WAlgBILP to the case of BLP

where variables in both levels are all continuous. Most of existing algorithms solving BLP

(Audet et al., 2007a, 1997, 2007b; Bard and Moore, 1990; Brotcorne et al., 2009; Hansen

et al., 1992; Júdice and Faustino, 1992; Önal, 1993; Wang et al., 2007a) are based on the

framework that is to convert the lower level optimality constraint to linear complimentary

constraints using KKT condition. By applying WAlgBILP, we can potentially get rid of

the classic framework completely and invent a novel approach to solving BLP. Note

that optimistic assumption is inexplicitly made in the formulation (4.1)-(4.4). It might

deserve our efforts to consider the case when pessimistic assumption is made. That would

be a good start for us to extend WAlgBILP to solve the complicated trilevel optimization

problems.
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